
The equation of the line of shortest distance between the lines \[\dfrac{x+4}{4}=\dfrac{y-2}{-2}=\dfrac{z-3}{0}\] and \[\dfrac{x-5}{5}=\dfrac{y-3}{3}=\dfrac{z}{0}\], is
\[\begin{align}
& (A)\text{ }\dfrac{x+4}{0}=\dfrac{y-2}{0}=\dfrac{z-3}{1} \\
& (B)\text{ }\dfrac{x-5}{0}=\dfrac{y-3}{0}=\dfrac{z}{1} \\
& (C)\text{ }\dfrac{x}{0}=\dfrac{y}{0}=\dfrac{z-3}{1} \\
& (D)\text{ None of these} \\
\end{align}\]
Answer
482.4k+ views
Hint: We needed to remember that the line of shortest distance between lines \[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] is \[{{L}_{3}}:\dfrac{x-{{x}_{3}}}{{{a}_{3}}}=\dfrac{y-{{y}_{3}}}{{{b}_{3}}}=\dfrac{z-{{z}_{3}}}{{{c}_{3}}}\] which must be perpendicular and also passes through the both \[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\]. By this point, we can solve the problem. Now we should equate \[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] to a constant \[\lambda \]. In the similar way, we should equate \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] to a constant \[\mu \]. Now we should find the line passing through these two points. Let us assume this line as \[{{L}_{3}}:\dfrac{x-{{x}_{3}}}{{{a}_{3}}}=\dfrac{y-{{y}_{3}}}{{{b}_{3}}}=\dfrac{z-{{z}_{3}}}{{{c}_{3}}}\]. This line should be perpendicular to both \[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] This will give us the \[{{L}_{3}}:\dfrac{x-{{x}_{3}}}{{{a}_{3}}}=\dfrac{y-{{y}_{3}}}{{{b}_{3}}}=\dfrac{z-{{z}_{3}}}{{{c}_{3}}}\]. Now by using the concept of sum of product of directional ratios of perpendicular will be zero, we can find the values of both \[\lambda \] and \[\mu \].
Complete step-by-step solution:
From the given information, let us assume \[{{L}_{1}}:\dfrac{x+4}{4}=\dfrac{y-2}{-2}=\dfrac{z-3}{0}\] and \[{{L}_{2}}:\dfrac{x-5}{5}=\dfrac{y-3}{3}=\dfrac{z}{0}\].
Let \[{{L}_{1}}:\dfrac{x+4}{4}=\dfrac{y-2}{-2}=\dfrac{z-3}{0}=\lambda .....(1)\]
From the equation (1) we get
\[\dfrac{x+4}{4}=\lambda \]
By using cross multiplication, we get
\[\Rightarrow x=4\lambda -4......(2)\]
In the same way, from equation (1) we get
\[\dfrac{y-2}{-2}=\lambda \]
By using cross multiplication, we get
\[\Rightarrow y=-2\lambda +2......(3)\]
In the same way, from equation (3) we get
\[\dfrac{z-3}{0}=\lambda \]
By using cross multiplication, we get
\[\Rightarrow z=3......(4)\]
From equation (2), (3) and (4) let us assume a point on \[{{L}_{1}}:\dfrac{x+4}{4}=\dfrac{y-2}{-2}=\dfrac{z-3}{0}\]is \[A\left( 4\lambda -4,-2\lambda +2,3 \right)\].
Let \[{{L}_{2}}:\dfrac{x-5}{5}=\dfrac{y-3}{3}=\dfrac{z}{0}=\mu ....(5)\]
From the equation (5) we get
\[\dfrac{x-5}{5}=\mu \]
By using cross multiplication, we get
\[\Rightarrow x=5\mu +5.....(6)\]
In the same way, from equation (5) we get
\[\dfrac{y-3}{3}=\mu \]
By using cross multiplication, we get
\[\Rightarrow y=3\mu +3.....(7)\]
In the same way, from equation (5) we get
\[\dfrac{z}{0}=\mu \]
By using cross multiplication, we get
\[\Rightarrow z=0......(8)\]
From equation (5), (6) and (7) let us assume a point on \[{{L}_{2}}:\dfrac{x-5}{5}=\dfrac{y-3}{3}=\dfrac{z}{0}=\mu ....(5)\] is \[B\left( 5\mu +5,3\mu +3,0 \right)\].
We know that the equation of line passing through \[A\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] and \[B\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)\] is \[\dfrac{x-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{y-{{y}_{1}}}{{{y}_{2}}-{{y}_{1}}}=\dfrac{z-{{z}_{1}}}{{{z}_{2}}-{{z}_{1}}} \]
Now we can find the equation of line passing through \[A\left( 4\lambda -4,-2\lambda +2,3 \right)\] and \[B\left( 5\mu +5,3\mu +3,0 \right)\] is \[{{L}_{3}}:\dfrac{x-(4\lambda -4)}{\left( 5\mu +5 \right)-\left( 4\lambda -4 \right)}=\dfrac{y-\left( -2\lambda +2 \right)}{\left( 3\mu +3 \right)-\left( -2\lambda +2 \right)}=\dfrac{z-3}{0-3}\]
\[\Rightarrow {{L}_{3}}:\dfrac{x-4\lambda +4}{\left( 5\mu -4\lambda +9 \right)}=\dfrac{y+2\lambda -2}{\left( 2\lambda +3\mu +1 \right)}=\dfrac{z-3}{-3}\]
We know that the line of shortest distance between lines \[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] is \[{{L}_{3}}:\dfrac{x-{{x}_{3}}}{{{a}_{3}}}=\dfrac{y-{{y}_{3}}}{{{b}_{3}}}=\dfrac{z-{{z}_{3}}}{{{c}_{3}}}\]which must be perpendicular to both }\[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\].
From the above condition, we get
\[{{L}_{3}}:\dfrac{x-4\lambda +4}{\left( 5\mu -4\lambda +9 \right)}=\dfrac{y+2\lambda -2}{\left( 2\lambda +3\mu +1 \right)}=\dfrac{z-3}{-3}\]is perpendicular to both \[{{L}_{1}}:\dfrac{x+4}{4}=\dfrac{y-2}{-2}=\dfrac{z-3}{0}\] and \[{{L}_{2}}:\dfrac{x-5}{5}=\dfrac{y-3}{3}=\dfrac{z}{0}\]
We know that a line \[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] is said to be perpendicular to \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] , if \[{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0\].
So, Line\[{{L}_{3}}:\dfrac{x-4\lambda +4}{\left( 5\mu -4\lambda +9 \right)}=\dfrac{y+2\lambda -2}{\left( 2\lambda +3\mu +1 \right)}=\dfrac{z-3}{-3}\] should be perpendicular to \[{{L}_{1}}:\dfrac{x+4}{4}=\dfrac{y-2}{-2}=\dfrac{z-3}{0}\].
We get \[{{a}_{1}}=5\mu -4\lambda +9,{{b}_{1}}=\left( 2\lambda +3\mu +1 \right),{{c}_{1}}=-3\] and \[{{a}_{2}}=4,{{b}_{2}}=-2,{{c}_{2}}=0\].
\[{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0\]
\[\Rightarrow 4\left( 5\mu -4\lambda +9 \right)+(-2)\left( 2\lambda +3\mu +1 \right)+3(0)=0\]
\[\Rightarrow 20\mu -16\lambda +36-4\lambda -6\mu -2=0\]
\[\Rightarrow -20\lambda +14\mu +34=0\]
\[\Rightarrow 20\lambda -14\mu -34=0\]
\[\Rightarrow 10\lambda -7\mu -17=0.....(9)\]
In the similar manner, we know that line\[{{L}_{3}}:\dfrac{x-4\lambda +4}{\left( 5\mu -4\lambda +9 \right)}=\dfrac{y+2\lambda -2}{\left( 2\lambda +3\mu +1 \right)}=\dfrac{z-3}{-3}\] should be perpendicular to \[{{L}_{2}}:\dfrac{x-5}{5}=\dfrac{y-3}{3}=\dfrac{z}{0}\].
We get \[{{a}_{1}}=5\mu -4\lambda +9,{{b}_{1}}=\left( 2\lambda +3\mu +1 \right),{{c}_{1}}=-3\] and \[{{a}_{2}}=5,{{b}_{2}}=3,{{c}_{2}}=0\].
\[{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0\]
\[\Rightarrow 5\left( 5\mu -4\lambda +9 \right)+(3)\left( 2\lambda +3\mu +1 \right)+3(0)=0\]
\[\Rightarrow 25\mu -20\lambda +45+6\lambda +9\mu +3=0\]
\[\Rightarrow -14\lambda +34\mu +48=0\]
\[\Rightarrow 14\lambda -34\mu -48=0\]
\[\Rightarrow 7\lambda -17\mu -24=0.....(10)\]
We need to find the values of \[\lambda \] and \[\mu \], to get the equation of line \[{{L}_{3}}:\dfrac{x-4\lambda +4}{\left( 5\mu -4\lambda +9 \right)}=\dfrac{y+2\lambda -2}{\left( 2\lambda +3\mu +1 \right)}=\dfrac{z-3}{-3}\].
By solving equations (9) and (10) we will get the values of \[\lambda \] and \[\mu \].
We should multiply equation (9) by 7.
\[70\lambda -49\mu -119=0....(11)\]
We should multiply (10) by 10.
\[70\lambda -170\mu -240=0.....(12)\]
Now we should subtract (11) and (12).
\[\begin{align}
& \left( 70\lambda -49\mu -119 \right)-\left( 70\lambda -170\mu -240 \right)=0 \\
& \Rightarrow (170-49)\mu +(240-119)=0 \\
& \Rightarrow 121\mu +121=0 \\
& \Rightarrow 121\mu =-121 \\
& \Rightarrow \mu =-1....(13) \\
\end{align}\]
From equation (13) we get the value of \[\mu \],
Now we will substitute the value of \[\mu \]in (10).
\[\begin{align}
& 7\lambda -17(-1)-24=0 \\
& \Rightarrow 7\lambda +17-24=0 \\
& \Rightarrow 7\lambda -7=0 \\
& \Rightarrow \lambda =1.......(14) \\
\end{align}\]
From equation (14) we get the value of \[\lambda \].
Now we will substitute the both values of \[\lambda \] and \[\mu \]in line equation \[{{L}_{3}}:\dfrac{x-4\lambda +4}{\left( 5\mu -4\lambda +9 \right)}=\dfrac{y+2\lambda -2}{\left( 2\lambda +3\mu +1 \right)}=\dfrac{z-3}{-3}\].
\[\Rightarrow {{L}_{3}}:\dfrac{x-4(1)+4}{\left( 5(-1)-4(1)+9 \right)}=\dfrac{y+2(1)-2}{-\left( 2(1)+3(-1)+1 \right)}=\dfrac{z-3}{-3}\]
\[\Rightarrow {{L}_{3}}:\dfrac{x-4+4}{-5-4+9}=\dfrac{y+2-2}{(2-3+1)}=\dfrac{z-3}{-3}\]
\[\Rightarrow {{L}_{3}}:\dfrac{x-0}{0}=\dfrac{y-0}{0}=\dfrac{z-3}{-3}\]
Now we will multiply and divide the equation by (-3)
\[\Rightarrow {{L}_{3}}:\dfrac{x-0}{\left( \dfrac{0}{-3} \right)}=\dfrac{y-0}{\left( \dfrac{0}{-3} \right)}=\dfrac{z-3}{\left( \dfrac{-3}{-3} \right)}\]
\[\Rightarrow {{L}_{3}}:\dfrac{x-0}{0}=\dfrac{y-0}{0}=\dfrac{z-3}{1}\]
Hence, option (C) is correct.
Note: The formula to calculate the shortest distance between the lines between \[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] is equal to \[\dfrac{\left| \left. \begin{align}
& ({{x}_{2}}-{{x}_{1}}\text{) (}{{\text{y}}_{2}}-{{y}_{1}})\text{ (}{{\text{z}}_{2}}-{{z}_{1}}) \\
& \text{ }{{\text{a}}_{1}}\;\;\;\;\;\;\;\;\;\;\;\;\; {{\text{b}}_{1}}\;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;{{\text{c}}_{1}} \\
& \text{ }{{\text{a}}_{2}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{{\text{b}}_{2}}\;\;\;\;\;\;\;\;\;\;\;\;\;\; {{\text{c}}_{2}} \\
\end{align} \right| \right.}{\sqrt{{{({{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}})}^{2}}+{{({{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}})}^{2}}+{{({{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}})}^{2}}}}\] where \[({{a}_{1}},{{b}_{1}},{{c}_{1}})\] and \[({{a}_{2}},{{b}_{2}},{{c}_{2}})\] are directional ratios of \[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] respectively.
Complete step-by-step solution:
From the given information, let us assume \[{{L}_{1}}:\dfrac{x+4}{4}=\dfrac{y-2}{-2}=\dfrac{z-3}{0}\] and \[{{L}_{2}}:\dfrac{x-5}{5}=\dfrac{y-3}{3}=\dfrac{z}{0}\].
Let \[{{L}_{1}}:\dfrac{x+4}{4}=\dfrac{y-2}{-2}=\dfrac{z-3}{0}=\lambda .....(1)\]
From the equation (1) we get
\[\dfrac{x+4}{4}=\lambda \]
By using cross multiplication, we get
\[\Rightarrow x=4\lambda -4......(2)\]
In the same way, from equation (1) we get
\[\dfrac{y-2}{-2}=\lambda \]
By using cross multiplication, we get
\[\Rightarrow y=-2\lambda +2......(3)\]
In the same way, from equation (3) we get
\[\dfrac{z-3}{0}=\lambda \]
By using cross multiplication, we get
\[\Rightarrow z=3......(4)\]
From equation (2), (3) and (4) let us assume a point on \[{{L}_{1}}:\dfrac{x+4}{4}=\dfrac{y-2}{-2}=\dfrac{z-3}{0}\]is \[A\left( 4\lambda -4,-2\lambda +2,3 \right)\].
Let \[{{L}_{2}}:\dfrac{x-5}{5}=\dfrac{y-3}{3}=\dfrac{z}{0}=\mu ....(5)\]
From the equation (5) we get
\[\dfrac{x-5}{5}=\mu \]
By using cross multiplication, we get
\[\Rightarrow x=5\mu +5.....(6)\]
In the same way, from equation (5) we get
\[\dfrac{y-3}{3}=\mu \]
By using cross multiplication, we get
\[\Rightarrow y=3\mu +3.....(7)\]
In the same way, from equation (5) we get
\[\dfrac{z}{0}=\mu \]
By using cross multiplication, we get
\[\Rightarrow z=0......(8)\]
From equation (5), (6) and (7) let us assume a point on \[{{L}_{2}}:\dfrac{x-5}{5}=\dfrac{y-3}{3}=\dfrac{z}{0}=\mu ....(5)\] is \[B\left( 5\mu +5,3\mu +3,0 \right)\].
We know that the equation of line passing through \[A\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] and \[B\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)\] is \[\dfrac{x-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{y-{{y}_{1}}}{{{y}_{2}}-{{y}_{1}}}=\dfrac{z-{{z}_{1}}}{{{z}_{2}}-{{z}_{1}}} \]
Now we can find the equation of line passing through \[A\left( 4\lambda -4,-2\lambda +2,3 \right)\] and \[B\left( 5\mu +5,3\mu +3,0 \right)\] is \[{{L}_{3}}:\dfrac{x-(4\lambda -4)}{\left( 5\mu +5 \right)-\left( 4\lambda -4 \right)}=\dfrac{y-\left( -2\lambda +2 \right)}{\left( 3\mu +3 \right)-\left( -2\lambda +2 \right)}=\dfrac{z-3}{0-3}\]
\[\Rightarrow {{L}_{3}}:\dfrac{x-4\lambda +4}{\left( 5\mu -4\lambda +9 \right)}=\dfrac{y+2\lambda -2}{\left( 2\lambda +3\mu +1 \right)}=\dfrac{z-3}{-3}\]
We know that the line of shortest distance between lines \[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] is \[{{L}_{3}}:\dfrac{x-{{x}_{3}}}{{{a}_{3}}}=\dfrac{y-{{y}_{3}}}{{{b}_{3}}}=\dfrac{z-{{z}_{3}}}{{{c}_{3}}}\]which must be perpendicular to both }\[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\].

From the above condition, we get
\[{{L}_{3}}:\dfrac{x-4\lambda +4}{\left( 5\mu -4\lambda +9 \right)}=\dfrac{y+2\lambda -2}{\left( 2\lambda +3\mu +1 \right)}=\dfrac{z-3}{-3}\]is perpendicular to both \[{{L}_{1}}:\dfrac{x+4}{4}=\dfrac{y-2}{-2}=\dfrac{z-3}{0}\] and \[{{L}_{2}}:\dfrac{x-5}{5}=\dfrac{y-3}{3}=\dfrac{z}{0}\]
We know that a line \[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] is said to be perpendicular to \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] , if \[{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0\].
So, Line\[{{L}_{3}}:\dfrac{x-4\lambda +4}{\left( 5\mu -4\lambda +9 \right)}=\dfrac{y+2\lambda -2}{\left( 2\lambda +3\mu +1 \right)}=\dfrac{z-3}{-3}\] should be perpendicular to \[{{L}_{1}}:\dfrac{x+4}{4}=\dfrac{y-2}{-2}=\dfrac{z-3}{0}\].
We get \[{{a}_{1}}=5\mu -4\lambda +9,{{b}_{1}}=\left( 2\lambda +3\mu +1 \right),{{c}_{1}}=-3\] and \[{{a}_{2}}=4,{{b}_{2}}=-2,{{c}_{2}}=0\].
\[{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0\]
\[\Rightarrow 4\left( 5\mu -4\lambda +9 \right)+(-2)\left( 2\lambda +3\mu +1 \right)+3(0)=0\]
\[\Rightarrow 20\mu -16\lambda +36-4\lambda -6\mu -2=0\]
\[\Rightarrow -20\lambda +14\mu +34=0\]
\[\Rightarrow 20\lambda -14\mu -34=0\]
\[\Rightarrow 10\lambda -7\mu -17=0.....(9)\]
In the similar manner, we know that line\[{{L}_{3}}:\dfrac{x-4\lambda +4}{\left( 5\mu -4\lambda +9 \right)}=\dfrac{y+2\lambda -2}{\left( 2\lambda +3\mu +1 \right)}=\dfrac{z-3}{-3}\] should be perpendicular to \[{{L}_{2}}:\dfrac{x-5}{5}=\dfrac{y-3}{3}=\dfrac{z}{0}\].
We get \[{{a}_{1}}=5\mu -4\lambda +9,{{b}_{1}}=\left( 2\lambda +3\mu +1 \right),{{c}_{1}}=-3\] and \[{{a}_{2}}=5,{{b}_{2}}=3,{{c}_{2}}=0\].
\[{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0\]
\[\Rightarrow 5\left( 5\mu -4\lambda +9 \right)+(3)\left( 2\lambda +3\mu +1 \right)+3(0)=0\]
\[\Rightarrow 25\mu -20\lambda +45+6\lambda +9\mu +3=0\]
\[\Rightarrow -14\lambda +34\mu +48=0\]
\[\Rightarrow 14\lambda -34\mu -48=0\]
\[\Rightarrow 7\lambda -17\mu -24=0.....(10)\]
We need to find the values of \[\lambda \] and \[\mu \], to get the equation of line \[{{L}_{3}}:\dfrac{x-4\lambda +4}{\left( 5\mu -4\lambda +9 \right)}=\dfrac{y+2\lambda -2}{\left( 2\lambda +3\mu +1 \right)}=\dfrac{z-3}{-3}\].
By solving equations (9) and (10) we will get the values of \[\lambda \] and \[\mu \].
We should multiply equation (9) by 7.
\[70\lambda -49\mu -119=0....(11)\]
We should multiply (10) by 10.
\[70\lambda -170\mu -240=0.....(12)\]
Now we should subtract (11) and (12).
\[\begin{align}
& \left( 70\lambda -49\mu -119 \right)-\left( 70\lambda -170\mu -240 \right)=0 \\
& \Rightarrow (170-49)\mu +(240-119)=0 \\
& \Rightarrow 121\mu +121=0 \\
& \Rightarrow 121\mu =-121 \\
& \Rightarrow \mu =-1....(13) \\
\end{align}\]
From equation (13) we get the value of \[\mu \],
Now we will substitute the value of \[\mu \]in (10).
\[\begin{align}
& 7\lambda -17(-1)-24=0 \\
& \Rightarrow 7\lambda +17-24=0 \\
& \Rightarrow 7\lambda -7=0 \\
& \Rightarrow \lambda =1.......(14) \\
\end{align}\]
From equation (14) we get the value of \[\lambda \].
Now we will substitute the both values of \[\lambda \] and \[\mu \]in line equation \[{{L}_{3}}:\dfrac{x-4\lambda +4}{\left( 5\mu -4\lambda +9 \right)}=\dfrac{y+2\lambda -2}{\left( 2\lambda +3\mu +1 \right)}=\dfrac{z-3}{-3}\].
\[\Rightarrow {{L}_{3}}:\dfrac{x-4(1)+4}{\left( 5(-1)-4(1)+9 \right)}=\dfrac{y+2(1)-2}{-\left( 2(1)+3(-1)+1 \right)}=\dfrac{z-3}{-3}\]
\[\Rightarrow {{L}_{3}}:\dfrac{x-4+4}{-5-4+9}=\dfrac{y+2-2}{(2-3+1)}=\dfrac{z-3}{-3}\]
\[\Rightarrow {{L}_{3}}:\dfrac{x-0}{0}=\dfrac{y-0}{0}=\dfrac{z-3}{-3}\]
Now we will multiply and divide the equation by (-3)
\[\Rightarrow {{L}_{3}}:\dfrac{x-0}{\left( \dfrac{0}{-3} \right)}=\dfrac{y-0}{\left( \dfrac{0}{-3} \right)}=\dfrac{z-3}{\left( \dfrac{-3}{-3} \right)}\]
\[\Rightarrow {{L}_{3}}:\dfrac{x-0}{0}=\dfrac{y-0}{0}=\dfrac{z-3}{1}\]
Hence, option (C) is correct.
Note: The formula to calculate the shortest distance between the lines between \[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] is equal to \[\dfrac{\left| \left. \begin{align}
& ({{x}_{2}}-{{x}_{1}}\text{) (}{{\text{y}}_{2}}-{{y}_{1}})\text{ (}{{\text{z}}_{2}}-{{z}_{1}}) \\
& \text{ }{{\text{a}}_{1}}\;\;\;\;\;\;\;\;\;\;\;\;\; {{\text{b}}_{1}}\;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;{{\text{c}}_{1}} \\
& \text{ }{{\text{a}}_{2}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{{\text{b}}_{2}}\;\;\;\;\;\;\;\;\;\;\;\;\;\; {{\text{c}}_{2}} \\
\end{align} \right| \right.}{\sqrt{{{({{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}})}^{2}}+{{({{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}})}^{2}}+{{({{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}})}^{2}}}}\] where \[({{a}_{1}},{{b}_{1}},{{c}_{1}})\] and \[({{a}_{2}},{{b}_{2}},{{c}_{2}})\] are directional ratios of \[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] respectively.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Give simple chemical tests to distinguish between the class 12 chemistry CBSE

How was the Civil Disobedience Movement different from class 12 social science CBSE

India is the secondlargest producer of AJute Bcotton class 12 biology CBSE

Define peptide linkage class 12 chemistry CBSE

How is democracy better than other forms of government class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
