The equation of the line of shortest distance between the lines \[\dfrac{x+4}{4}=\dfrac{y-2}{-2}=\dfrac{z-3}{0}\] and \[\dfrac{x-5}{5}=\dfrac{y-3}{3}=\dfrac{z}{0}\], is
\[\begin{align}
& (A)\text{ }\dfrac{x+4}{0}=\dfrac{y-2}{0}=\dfrac{z-3}{1} \\
& (B)\text{ }\dfrac{x-5}{0}=\dfrac{y-3}{0}=\dfrac{z}{1} \\
& (C)\text{ }\dfrac{x}{0}=\dfrac{y}{0}=\dfrac{z-3}{1} \\
& (D)\text{ None of these} \\
\end{align}\]
Answer
Verified
466.5k+ views
Hint: We needed to remember that the line of shortest distance between lines \[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] is \[{{L}_{3}}:\dfrac{x-{{x}_{3}}}{{{a}_{3}}}=\dfrac{y-{{y}_{3}}}{{{b}_{3}}}=\dfrac{z-{{z}_{3}}}{{{c}_{3}}}\] which must be perpendicular and also passes through the both \[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\]. By this point, we can solve the problem. Now we should equate \[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] to a constant \[\lambda \]. In the similar way, we should equate \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] to a constant \[\mu \]. Now we should find the line passing through these two points. Let us assume this line as \[{{L}_{3}}:\dfrac{x-{{x}_{3}}}{{{a}_{3}}}=\dfrac{y-{{y}_{3}}}{{{b}_{3}}}=\dfrac{z-{{z}_{3}}}{{{c}_{3}}}\]. This line should be perpendicular to both \[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] This will give us the \[{{L}_{3}}:\dfrac{x-{{x}_{3}}}{{{a}_{3}}}=\dfrac{y-{{y}_{3}}}{{{b}_{3}}}=\dfrac{z-{{z}_{3}}}{{{c}_{3}}}\]. Now by using the concept of sum of product of directional ratios of perpendicular will be zero, we can find the values of both \[\lambda \] and \[\mu \].
Complete step-by-step solution:
From the given information, let us assume \[{{L}_{1}}:\dfrac{x+4}{4}=\dfrac{y-2}{-2}=\dfrac{z-3}{0}\] and \[{{L}_{2}}:\dfrac{x-5}{5}=\dfrac{y-3}{3}=\dfrac{z}{0}\].
Let \[{{L}_{1}}:\dfrac{x+4}{4}=\dfrac{y-2}{-2}=\dfrac{z-3}{0}=\lambda .....(1)\]
From the equation (1) we get
\[\dfrac{x+4}{4}=\lambda \]
By using cross multiplication, we get
\[\Rightarrow x=4\lambda -4......(2)\]
In the same way, from equation (1) we get
\[\dfrac{y-2}{-2}=\lambda \]
By using cross multiplication, we get
\[\Rightarrow y=-2\lambda +2......(3)\]
In the same way, from equation (3) we get
\[\dfrac{z-3}{0}=\lambda \]
By using cross multiplication, we get
\[\Rightarrow z=3......(4)\]
From equation (2), (3) and (4) let us assume a point on \[{{L}_{1}}:\dfrac{x+4}{4}=\dfrac{y-2}{-2}=\dfrac{z-3}{0}\]is \[A\left( 4\lambda -4,-2\lambda +2,3 \right)\].
Let \[{{L}_{2}}:\dfrac{x-5}{5}=\dfrac{y-3}{3}=\dfrac{z}{0}=\mu ....(5)\]
From the equation (5) we get
\[\dfrac{x-5}{5}=\mu \]
By using cross multiplication, we get
\[\Rightarrow x=5\mu +5.....(6)\]
In the same way, from equation (5) we get
\[\dfrac{y-3}{3}=\mu \]
By using cross multiplication, we get
\[\Rightarrow y=3\mu +3.....(7)\]
In the same way, from equation (5) we get
\[\dfrac{z}{0}=\mu \]
By using cross multiplication, we get
\[\Rightarrow z=0......(8)\]
From equation (5), (6) and (7) let us assume a point on \[{{L}_{2}}:\dfrac{x-5}{5}=\dfrac{y-3}{3}=\dfrac{z}{0}=\mu ....(5)\] is \[B\left( 5\mu +5,3\mu +3,0 \right)\].
We know that the equation of line passing through \[A\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] and \[B\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)\] is \[\dfrac{x-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{y-{{y}_{1}}}{{{y}_{2}}-{{y}_{1}}}=\dfrac{z-{{z}_{1}}}{{{z}_{2}}-{{z}_{1}}} \]
Now we can find the equation of line passing through \[A\left( 4\lambda -4,-2\lambda +2,3 \right)\] and \[B\left( 5\mu +5,3\mu +3,0 \right)\] is \[{{L}_{3}}:\dfrac{x-(4\lambda -4)}{\left( 5\mu +5 \right)-\left( 4\lambda -4 \right)}=\dfrac{y-\left( -2\lambda +2 \right)}{\left( 3\mu +3 \right)-\left( -2\lambda +2 \right)}=\dfrac{z-3}{0-3}\]
\[\Rightarrow {{L}_{3}}:\dfrac{x-4\lambda +4}{\left( 5\mu -4\lambda +9 \right)}=\dfrac{y+2\lambda -2}{\left( 2\lambda +3\mu +1 \right)}=\dfrac{z-3}{-3}\]
We know that the line of shortest distance between lines \[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] is \[{{L}_{3}}:\dfrac{x-{{x}_{3}}}{{{a}_{3}}}=\dfrac{y-{{y}_{3}}}{{{b}_{3}}}=\dfrac{z-{{z}_{3}}}{{{c}_{3}}}\]which must be perpendicular to both }\[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\].
From the above condition, we get
\[{{L}_{3}}:\dfrac{x-4\lambda +4}{\left( 5\mu -4\lambda +9 \right)}=\dfrac{y+2\lambda -2}{\left( 2\lambda +3\mu +1 \right)}=\dfrac{z-3}{-3}\]is perpendicular to both \[{{L}_{1}}:\dfrac{x+4}{4}=\dfrac{y-2}{-2}=\dfrac{z-3}{0}\] and \[{{L}_{2}}:\dfrac{x-5}{5}=\dfrac{y-3}{3}=\dfrac{z}{0}\]
We know that a line \[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] is said to be perpendicular to \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] , if \[{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0\].
So, Line\[{{L}_{3}}:\dfrac{x-4\lambda +4}{\left( 5\mu -4\lambda +9 \right)}=\dfrac{y+2\lambda -2}{\left( 2\lambda +3\mu +1 \right)}=\dfrac{z-3}{-3}\] should be perpendicular to \[{{L}_{1}}:\dfrac{x+4}{4}=\dfrac{y-2}{-2}=\dfrac{z-3}{0}\].
We get \[{{a}_{1}}=5\mu -4\lambda +9,{{b}_{1}}=\left( 2\lambda +3\mu +1 \right),{{c}_{1}}=-3\] and \[{{a}_{2}}=4,{{b}_{2}}=-2,{{c}_{2}}=0\].
\[{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0\]
\[\Rightarrow 4\left( 5\mu -4\lambda +9 \right)+(-2)\left( 2\lambda +3\mu +1 \right)+3(0)=0\]
\[\Rightarrow 20\mu -16\lambda +36-4\lambda -6\mu -2=0\]
\[\Rightarrow -20\lambda +14\mu +34=0\]
\[\Rightarrow 20\lambda -14\mu -34=0\]
\[\Rightarrow 10\lambda -7\mu -17=0.....(9)\]
In the similar manner, we know that line\[{{L}_{3}}:\dfrac{x-4\lambda +4}{\left( 5\mu -4\lambda +9 \right)}=\dfrac{y+2\lambda -2}{\left( 2\lambda +3\mu +1 \right)}=\dfrac{z-3}{-3}\] should be perpendicular to \[{{L}_{2}}:\dfrac{x-5}{5}=\dfrac{y-3}{3}=\dfrac{z}{0}\].
We get \[{{a}_{1}}=5\mu -4\lambda +9,{{b}_{1}}=\left( 2\lambda +3\mu +1 \right),{{c}_{1}}=-3\] and \[{{a}_{2}}=5,{{b}_{2}}=3,{{c}_{2}}=0\].
\[{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0\]
\[\Rightarrow 5\left( 5\mu -4\lambda +9 \right)+(3)\left( 2\lambda +3\mu +1 \right)+3(0)=0\]
\[\Rightarrow 25\mu -20\lambda +45+6\lambda +9\mu +3=0\]
\[\Rightarrow -14\lambda +34\mu +48=0\]
\[\Rightarrow 14\lambda -34\mu -48=0\]
\[\Rightarrow 7\lambda -17\mu -24=0.....(10)\]
We need to find the values of \[\lambda \] and \[\mu \], to get the equation of line \[{{L}_{3}}:\dfrac{x-4\lambda +4}{\left( 5\mu -4\lambda +9 \right)}=\dfrac{y+2\lambda -2}{\left( 2\lambda +3\mu +1 \right)}=\dfrac{z-3}{-3}\].
By solving equations (9) and (10) we will get the values of \[\lambda \] and \[\mu \].
We should multiply equation (9) by 7.
\[70\lambda -49\mu -119=0....(11)\]
We should multiply (10) by 10.
\[70\lambda -170\mu -240=0.....(12)\]
Now we should subtract (11) and (12).
\[\begin{align}
& \left( 70\lambda -49\mu -119 \right)-\left( 70\lambda -170\mu -240 \right)=0 \\
& \Rightarrow (170-49)\mu +(240-119)=0 \\
& \Rightarrow 121\mu +121=0 \\
& \Rightarrow 121\mu =-121 \\
& \Rightarrow \mu =-1....(13) \\
\end{align}\]
From equation (13) we get the value of \[\mu \],
Now we will substitute the value of \[\mu \]in (10).
\[\begin{align}
& 7\lambda -17(-1)-24=0 \\
& \Rightarrow 7\lambda +17-24=0 \\
& \Rightarrow 7\lambda -7=0 \\
& \Rightarrow \lambda =1.......(14) \\
\end{align}\]
From equation (14) we get the value of \[\lambda \].
Now we will substitute the both values of \[\lambda \] and \[\mu \]in line equation \[{{L}_{3}}:\dfrac{x-4\lambda +4}{\left( 5\mu -4\lambda +9 \right)}=\dfrac{y+2\lambda -2}{\left( 2\lambda +3\mu +1 \right)}=\dfrac{z-3}{-3}\].
\[\Rightarrow {{L}_{3}}:\dfrac{x-4(1)+4}{\left( 5(-1)-4(1)+9 \right)}=\dfrac{y+2(1)-2}{-\left( 2(1)+3(-1)+1 \right)}=\dfrac{z-3}{-3}\]
\[\Rightarrow {{L}_{3}}:\dfrac{x-4+4}{-5-4+9}=\dfrac{y+2-2}{(2-3+1)}=\dfrac{z-3}{-3}\]
\[\Rightarrow {{L}_{3}}:\dfrac{x-0}{0}=\dfrac{y-0}{0}=\dfrac{z-3}{-3}\]
Now we will multiply and divide the equation by (-3)
\[\Rightarrow {{L}_{3}}:\dfrac{x-0}{\left( \dfrac{0}{-3} \right)}=\dfrac{y-0}{\left( \dfrac{0}{-3} \right)}=\dfrac{z-3}{\left( \dfrac{-3}{-3} \right)}\]
\[\Rightarrow {{L}_{3}}:\dfrac{x-0}{0}=\dfrac{y-0}{0}=\dfrac{z-3}{1}\]
Hence, option (C) is correct.
Note: The formula to calculate the shortest distance between the lines between \[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] is equal to \[\dfrac{\left| \left. \begin{align}
& ({{x}_{2}}-{{x}_{1}}\text{) (}{{\text{y}}_{2}}-{{y}_{1}})\text{ (}{{\text{z}}_{2}}-{{z}_{1}}) \\
& \text{ }{{\text{a}}_{1}}\;\;\;\;\;\;\;\;\;\;\;\;\; {{\text{b}}_{1}}\;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;{{\text{c}}_{1}} \\
& \text{ }{{\text{a}}_{2}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{{\text{b}}_{2}}\;\;\;\;\;\;\;\;\;\;\;\;\;\; {{\text{c}}_{2}} \\
\end{align} \right| \right.}{\sqrt{{{({{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}})}^{2}}+{{({{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}})}^{2}}+{{({{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}})}^{2}}}}\] where \[({{a}_{1}},{{b}_{1}},{{c}_{1}})\] and \[({{a}_{2}},{{b}_{2}},{{c}_{2}})\] are directional ratios of \[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] respectively.
Complete step-by-step solution:
From the given information, let us assume \[{{L}_{1}}:\dfrac{x+4}{4}=\dfrac{y-2}{-2}=\dfrac{z-3}{0}\] and \[{{L}_{2}}:\dfrac{x-5}{5}=\dfrac{y-3}{3}=\dfrac{z}{0}\].
Let \[{{L}_{1}}:\dfrac{x+4}{4}=\dfrac{y-2}{-2}=\dfrac{z-3}{0}=\lambda .....(1)\]
From the equation (1) we get
\[\dfrac{x+4}{4}=\lambda \]
By using cross multiplication, we get
\[\Rightarrow x=4\lambda -4......(2)\]
In the same way, from equation (1) we get
\[\dfrac{y-2}{-2}=\lambda \]
By using cross multiplication, we get
\[\Rightarrow y=-2\lambda +2......(3)\]
In the same way, from equation (3) we get
\[\dfrac{z-3}{0}=\lambda \]
By using cross multiplication, we get
\[\Rightarrow z=3......(4)\]
From equation (2), (3) and (4) let us assume a point on \[{{L}_{1}}:\dfrac{x+4}{4}=\dfrac{y-2}{-2}=\dfrac{z-3}{0}\]is \[A\left( 4\lambda -4,-2\lambda +2,3 \right)\].
Let \[{{L}_{2}}:\dfrac{x-5}{5}=\dfrac{y-3}{3}=\dfrac{z}{0}=\mu ....(5)\]
From the equation (5) we get
\[\dfrac{x-5}{5}=\mu \]
By using cross multiplication, we get
\[\Rightarrow x=5\mu +5.....(6)\]
In the same way, from equation (5) we get
\[\dfrac{y-3}{3}=\mu \]
By using cross multiplication, we get
\[\Rightarrow y=3\mu +3.....(7)\]
In the same way, from equation (5) we get
\[\dfrac{z}{0}=\mu \]
By using cross multiplication, we get
\[\Rightarrow z=0......(8)\]
From equation (5), (6) and (7) let us assume a point on \[{{L}_{2}}:\dfrac{x-5}{5}=\dfrac{y-3}{3}=\dfrac{z}{0}=\mu ....(5)\] is \[B\left( 5\mu +5,3\mu +3,0 \right)\].
We know that the equation of line passing through \[A\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] and \[B\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)\] is \[\dfrac{x-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{y-{{y}_{1}}}{{{y}_{2}}-{{y}_{1}}}=\dfrac{z-{{z}_{1}}}{{{z}_{2}}-{{z}_{1}}} \]
Now we can find the equation of line passing through \[A\left( 4\lambda -4,-2\lambda +2,3 \right)\] and \[B\left( 5\mu +5,3\mu +3,0 \right)\] is \[{{L}_{3}}:\dfrac{x-(4\lambda -4)}{\left( 5\mu +5 \right)-\left( 4\lambda -4 \right)}=\dfrac{y-\left( -2\lambda +2 \right)}{\left( 3\mu +3 \right)-\left( -2\lambda +2 \right)}=\dfrac{z-3}{0-3}\]
\[\Rightarrow {{L}_{3}}:\dfrac{x-4\lambda +4}{\left( 5\mu -4\lambda +9 \right)}=\dfrac{y+2\lambda -2}{\left( 2\lambda +3\mu +1 \right)}=\dfrac{z-3}{-3}\]
We know that the line of shortest distance between lines \[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] is \[{{L}_{3}}:\dfrac{x-{{x}_{3}}}{{{a}_{3}}}=\dfrac{y-{{y}_{3}}}{{{b}_{3}}}=\dfrac{z-{{z}_{3}}}{{{c}_{3}}}\]which must be perpendicular to both }\[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\].
From the above condition, we get
\[{{L}_{3}}:\dfrac{x-4\lambda +4}{\left( 5\mu -4\lambda +9 \right)}=\dfrac{y+2\lambda -2}{\left( 2\lambda +3\mu +1 \right)}=\dfrac{z-3}{-3}\]is perpendicular to both \[{{L}_{1}}:\dfrac{x+4}{4}=\dfrac{y-2}{-2}=\dfrac{z-3}{0}\] and \[{{L}_{2}}:\dfrac{x-5}{5}=\dfrac{y-3}{3}=\dfrac{z}{0}\]
We know that a line \[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] is said to be perpendicular to \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] , if \[{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0\].
So, Line\[{{L}_{3}}:\dfrac{x-4\lambda +4}{\left( 5\mu -4\lambda +9 \right)}=\dfrac{y+2\lambda -2}{\left( 2\lambda +3\mu +1 \right)}=\dfrac{z-3}{-3}\] should be perpendicular to \[{{L}_{1}}:\dfrac{x+4}{4}=\dfrac{y-2}{-2}=\dfrac{z-3}{0}\].
We get \[{{a}_{1}}=5\mu -4\lambda +9,{{b}_{1}}=\left( 2\lambda +3\mu +1 \right),{{c}_{1}}=-3\] and \[{{a}_{2}}=4,{{b}_{2}}=-2,{{c}_{2}}=0\].
\[{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0\]
\[\Rightarrow 4\left( 5\mu -4\lambda +9 \right)+(-2)\left( 2\lambda +3\mu +1 \right)+3(0)=0\]
\[\Rightarrow 20\mu -16\lambda +36-4\lambda -6\mu -2=0\]
\[\Rightarrow -20\lambda +14\mu +34=0\]
\[\Rightarrow 20\lambda -14\mu -34=0\]
\[\Rightarrow 10\lambda -7\mu -17=0.....(9)\]
In the similar manner, we know that line\[{{L}_{3}}:\dfrac{x-4\lambda +4}{\left( 5\mu -4\lambda +9 \right)}=\dfrac{y+2\lambda -2}{\left( 2\lambda +3\mu +1 \right)}=\dfrac{z-3}{-3}\] should be perpendicular to \[{{L}_{2}}:\dfrac{x-5}{5}=\dfrac{y-3}{3}=\dfrac{z}{0}\].
We get \[{{a}_{1}}=5\mu -4\lambda +9,{{b}_{1}}=\left( 2\lambda +3\mu +1 \right),{{c}_{1}}=-3\] and \[{{a}_{2}}=5,{{b}_{2}}=3,{{c}_{2}}=0\].
\[{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0\]
\[\Rightarrow 5\left( 5\mu -4\lambda +9 \right)+(3)\left( 2\lambda +3\mu +1 \right)+3(0)=0\]
\[\Rightarrow 25\mu -20\lambda +45+6\lambda +9\mu +3=0\]
\[\Rightarrow -14\lambda +34\mu +48=0\]
\[\Rightarrow 14\lambda -34\mu -48=0\]
\[\Rightarrow 7\lambda -17\mu -24=0.....(10)\]
We need to find the values of \[\lambda \] and \[\mu \], to get the equation of line \[{{L}_{3}}:\dfrac{x-4\lambda +4}{\left( 5\mu -4\lambda +9 \right)}=\dfrac{y+2\lambda -2}{\left( 2\lambda +3\mu +1 \right)}=\dfrac{z-3}{-3}\].
By solving equations (9) and (10) we will get the values of \[\lambda \] and \[\mu \].
We should multiply equation (9) by 7.
\[70\lambda -49\mu -119=0....(11)\]
We should multiply (10) by 10.
\[70\lambda -170\mu -240=0.....(12)\]
Now we should subtract (11) and (12).
\[\begin{align}
& \left( 70\lambda -49\mu -119 \right)-\left( 70\lambda -170\mu -240 \right)=0 \\
& \Rightarrow (170-49)\mu +(240-119)=0 \\
& \Rightarrow 121\mu +121=0 \\
& \Rightarrow 121\mu =-121 \\
& \Rightarrow \mu =-1....(13) \\
\end{align}\]
From equation (13) we get the value of \[\mu \],
Now we will substitute the value of \[\mu \]in (10).
\[\begin{align}
& 7\lambda -17(-1)-24=0 \\
& \Rightarrow 7\lambda +17-24=0 \\
& \Rightarrow 7\lambda -7=0 \\
& \Rightarrow \lambda =1.......(14) \\
\end{align}\]
From equation (14) we get the value of \[\lambda \].
Now we will substitute the both values of \[\lambda \] and \[\mu \]in line equation \[{{L}_{3}}:\dfrac{x-4\lambda +4}{\left( 5\mu -4\lambda +9 \right)}=\dfrac{y+2\lambda -2}{\left( 2\lambda +3\mu +1 \right)}=\dfrac{z-3}{-3}\].
\[\Rightarrow {{L}_{3}}:\dfrac{x-4(1)+4}{\left( 5(-1)-4(1)+9 \right)}=\dfrac{y+2(1)-2}{-\left( 2(1)+3(-1)+1 \right)}=\dfrac{z-3}{-3}\]
\[\Rightarrow {{L}_{3}}:\dfrac{x-4+4}{-5-4+9}=\dfrac{y+2-2}{(2-3+1)}=\dfrac{z-3}{-3}\]
\[\Rightarrow {{L}_{3}}:\dfrac{x-0}{0}=\dfrac{y-0}{0}=\dfrac{z-3}{-3}\]
Now we will multiply and divide the equation by (-3)
\[\Rightarrow {{L}_{3}}:\dfrac{x-0}{\left( \dfrac{0}{-3} \right)}=\dfrac{y-0}{\left( \dfrac{0}{-3} \right)}=\dfrac{z-3}{\left( \dfrac{-3}{-3} \right)}\]
\[\Rightarrow {{L}_{3}}:\dfrac{x-0}{0}=\dfrac{y-0}{0}=\dfrac{z-3}{1}\]
Hence, option (C) is correct.
Note: The formula to calculate the shortest distance between the lines between \[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] is equal to \[\dfrac{\left| \left. \begin{align}
& ({{x}_{2}}-{{x}_{1}}\text{) (}{{\text{y}}_{2}}-{{y}_{1}})\text{ (}{{\text{z}}_{2}}-{{z}_{1}}) \\
& \text{ }{{\text{a}}_{1}}\;\;\;\;\;\;\;\;\;\;\;\;\; {{\text{b}}_{1}}\;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;{{\text{c}}_{1}} \\
& \text{ }{{\text{a}}_{2}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{{\text{b}}_{2}}\;\;\;\;\;\;\;\;\;\;\;\;\;\; {{\text{c}}_{2}} \\
\end{align} \right| \right.}{\sqrt{{{({{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}})}^{2}}+{{({{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}})}^{2}}+{{({{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}})}^{2}}}}\] where \[({{a}_{1}},{{b}_{1}},{{c}_{1}})\] and \[({{a}_{2}},{{b}_{2}},{{c}_{2}})\] are directional ratios of \[{{L}_{1}}:\dfrac{x-{{x}_{1}}}{{{a}_{1}}}=\dfrac{y-{{y}_{1}}}{{{b}_{1}}}=\dfrac{z-{{z}_{1}}}{{{c}_{1}}}\] and \[{{L}_{2}}:\dfrac{x-{{x}_{2}}}{{{a}_{2}}}=\dfrac{y-{{y}_{2}}}{{{b}_{2}}}=\dfrac{z-{{z}_{2}}}{{{c}_{2}}}\] respectively.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
Explain sex determination in humans with the help of class 12 biology CBSE