The equation of the straight line joining the point $\left( a,b \right)$ to the point of
intersection of the lines $\dfrac{x}{a}+\dfrac{y}{b}=1$ and $\dfrac{x}{b}+\dfrac{y}{a}=1$ is
(a) ${{a}^{2}}y-{{b}^{2}}x=ab\left( a-b \right)$
(b) ${{a}^{2}}x+{{b}^{2}}y=ab\left( a+b \right)$
(c) ${{a}^{2}}y+{{b}^{2}}x=ab$
(d) ${{a}^{2}}x+{{b}^{2}}y=ab\left( a-b \right)$
Answer
Verified
511.2k+ views
Hint: Solve the 2 line equations to find the point of intersection. Substitute these intersection points along with the given coordinate points back into the line equations.
The two equations given in the question are,
$\dfrac{x}{a}+\dfrac{y}{b}=1$ and $\dfrac{x}{b}+\dfrac{y}{a}=1$
The given equations can be rearranged as,
$\dfrac{x}{a}+\dfrac{y}{b}-1=0$ and $\dfrac{x}{b}+\dfrac{y}{a}-1=0$
The point of intersection of these two lines can be obtained by solving the equations and finding the values of \[x\] and \[y\]. Subtracting the equations,
\[\left( \dfrac{x}{a}+\dfrac{y}{b}-1 \right)-\left( \dfrac{x}{b}+\dfrac{y}{a}-1 \right)=0\]
Taking similar terms together,
\[\left( \dfrac{x}{a}-\dfrac{x}{b} \right)+\left( \dfrac{y}{b}-\dfrac{y}{a} \right)+(-1+1)=0\]
Taking out the common terms,
\[\begin{align}
& x\left( \dfrac{1}{a}-\dfrac{1}{b} \right)+y\left( \dfrac{1}{b}-\dfrac{1}{a} \right)=0 \\
& x\left( \dfrac{1}{a}-\dfrac{1}{b} \right)-y\left( \dfrac{1}{a}-\dfrac{1}{b} \right)=0 \\
\end{align}\]
Again, taking out the common term, we get,
\[\begin{align}
& \left( x-y \right)\left( \dfrac{1}{a}-\dfrac{1}{b} \right)=0 \\
& \left( x-y \right)=0 \\
& x=y \\
\end{align}\]
Now we can substitute \[x=y\] in one of the equations of the lines, say $\dfrac{x}{a}+\dfrac{y}{b}-1=0$,
$\begin{align}
& \dfrac{y}{a}+\dfrac{y}{b}-1=0 \\
& \Rightarrow y\left( \dfrac{1}{a}+\dfrac{1}{b} \right)-1=0 \\
& \Rightarrow y\left( \dfrac{1}{a}+\dfrac{1}{b} \right)=1 \\
\end{align}$
Taking the LCM,
$\begin{align}
& \Rightarrow y\left( \dfrac{b+a}{ab} \right)=1 \\
& \Rightarrow y=\dfrac{1}{\left( \dfrac{b+a}{ab} \right)} \\
& \Rightarrow y=\left( \dfrac{ab}{b+a} \right) \\
& \Rightarrow y=\left( \dfrac{ab}{a+b} \right) \\
\end{align}$
Since \[x=y\], we get the coordinates as$x=y=\left( \dfrac{ab}{a+b} \right)$. Therefore, we can write the coordinates of the point of intersection of the lines $\dfrac{x}{a}+\dfrac{y}{b}=1$ and $\dfrac{x}{b}+\dfrac{y}{a}=1$ as $\left[ \left( \dfrac{ab}{a+b} \right),\left( \dfrac{ab}{a+b} \right) \right]$.
The equation of a line passing through two points \[({{x}_{1}},{{y}_{1}})\] and \[({{x}_{2}},{{y}_{2}})\] is given by,
\[\begin{align}
& y-{{y}_{1}}=m(x-{{x}_{1}}) \\
& \Rightarrow y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\times (x-{{x}_{1}}) \\
\end{align}\]
So, the equation of the straight line joining the point $\left( a,b \right)$ and $\left[ \left( \dfrac{ab}{a+b} \right),\left( \dfrac{ab}{a+b} \right) \right]$ can be found as,
\[y-b=\left( \dfrac{\dfrac{ab}{a+b}-b}{\dfrac{ab}{a+b}-a} \right)\left( x-a \right)\]
Taking the LCM of the terms in the numerator and denominator,
\[y-b=\left( \dfrac{\dfrac{ab-b(a+b)}{a+b}}{\dfrac{ab-a(a+b)}{a+b}} \right)\left( x-a \right)\]
Opening the brackets and simplifying the terms,
\[\begin{align}
& y-b=\left( \dfrac{\dfrac{ab-ba-{{b}^{2}})}{a+b}}{\dfrac{ab-{{a}^{2}}-ab)}{a+b}} \right)\left( x-a \right) \\
& y-b=\left( \dfrac{\dfrac{-{{b}^{2}}}{a+b}}{\dfrac{-{{a}^{2}}}{a+b}} \right)\left( x-a \right) \\
& y-b=\left( \dfrac{{{b}^{2}}}{{{a}^{2}}} \right)\left( x-a \right) \\
& {{a}^{2}}(y-b)={{b}^{2}}(x-a) \\
& {{a}^{2}}y-{{a}^{2}}b={{b}^{2}}x-{{b}^{2}}a \\
& {{b}^{2}}x-{{a}^{2}}y={{b}^{2}}a-{{a}^{2}}b \\
& {{b}^{2}}x-{{a}^{2}}y=ab(b-a) \\
\end{align}\]
Looking at the given options, we can rewrite the obtained equation as
\[\begin{align}
& -{{b}^{2}}x+{{a}^{2}}y=-ab(b-a) \\
& {{a}^{2}}y-{{b}^{2}}x=ab(a-b) \\
\end{align}\]
Therefore, we get option (a) as the correct answer.
Note: The equation of a straight line passing through the point of intersection of two lines, say A and B can be written as \[A+\lambda B=0\]. Therefore, the equation of the straight line passing through the point of intersection of the given lines $\dfrac{x}{a}+\dfrac{y}{b}-1=0$ and $\dfrac{x}{b}+\dfrac{y}{a}-1=0$ can be written as, $\left( \dfrac{x}{a}+\dfrac{y}{b}-1 \right)+\lambda \left( \dfrac{x}{b}+\dfrac{y}{a}-1 \right)=0$. Since the required straight line passes through point $\left( a,b \right)$, we can substitute the coordinates in the above equation and find the value of $\lambda $. This method is lengthy as it has complex terms.
The two equations given in the question are,
$\dfrac{x}{a}+\dfrac{y}{b}=1$ and $\dfrac{x}{b}+\dfrac{y}{a}=1$
The given equations can be rearranged as,
$\dfrac{x}{a}+\dfrac{y}{b}-1=0$ and $\dfrac{x}{b}+\dfrac{y}{a}-1=0$
The point of intersection of these two lines can be obtained by solving the equations and finding the values of \[x\] and \[y\]. Subtracting the equations,
\[\left( \dfrac{x}{a}+\dfrac{y}{b}-1 \right)-\left( \dfrac{x}{b}+\dfrac{y}{a}-1 \right)=0\]
Taking similar terms together,
\[\left( \dfrac{x}{a}-\dfrac{x}{b} \right)+\left( \dfrac{y}{b}-\dfrac{y}{a} \right)+(-1+1)=0\]
Taking out the common terms,
\[\begin{align}
& x\left( \dfrac{1}{a}-\dfrac{1}{b} \right)+y\left( \dfrac{1}{b}-\dfrac{1}{a} \right)=0 \\
& x\left( \dfrac{1}{a}-\dfrac{1}{b} \right)-y\left( \dfrac{1}{a}-\dfrac{1}{b} \right)=0 \\
\end{align}\]
Again, taking out the common term, we get,
\[\begin{align}
& \left( x-y \right)\left( \dfrac{1}{a}-\dfrac{1}{b} \right)=0 \\
& \left( x-y \right)=0 \\
& x=y \\
\end{align}\]
Now we can substitute \[x=y\] in one of the equations of the lines, say $\dfrac{x}{a}+\dfrac{y}{b}-1=0$,
$\begin{align}
& \dfrac{y}{a}+\dfrac{y}{b}-1=0 \\
& \Rightarrow y\left( \dfrac{1}{a}+\dfrac{1}{b} \right)-1=0 \\
& \Rightarrow y\left( \dfrac{1}{a}+\dfrac{1}{b} \right)=1 \\
\end{align}$
Taking the LCM,
$\begin{align}
& \Rightarrow y\left( \dfrac{b+a}{ab} \right)=1 \\
& \Rightarrow y=\dfrac{1}{\left( \dfrac{b+a}{ab} \right)} \\
& \Rightarrow y=\left( \dfrac{ab}{b+a} \right) \\
& \Rightarrow y=\left( \dfrac{ab}{a+b} \right) \\
\end{align}$
Since \[x=y\], we get the coordinates as$x=y=\left( \dfrac{ab}{a+b} \right)$. Therefore, we can write the coordinates of the point of intersection of the lines $\dfrac{x}{a}+\dfrac{y}{b}=1$ and $\dfrac{x}{b}+\dfrac{y}{a}=1$ as $\left[ \left( \dfrac{ab}{a+b} \right),\left( \dfrac{ab}{a+b} \right) \right]$.
The equation of a line passing through two points \[({{x}_{1}},{{y}_{1}})\] and \[({{x}_{2}},{{y}_{2}})\] is given by,
\[\begin{align}
& y-{{y}_{1}}=m(x-{{x}_{1}}) \\
& \Rightarrow y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\times (x-{{x}_{1}}) \\
\end{align}\]
So, the equation of the straight line joining the point $\left( a,b \right)$ and $\left[ \left( \dfrac{ab}{a+b} \right),\left( \dfrac{ab}{a+b} \right) \right]$ can be found as,
\[y-b=\left( \dfrac{\dfrac{ab}{a+b}-b}{\dfrac{ab}{a+b}-a} \right)\left( x-a \right)\]
Taking the LCM of the terms in the numerator and denominator,
\[y-b=\left( \dfrac{\dfrac{ab-b(a+b)}{a+b}}{\dfrac{ab-a(a+b)}{a+b}} \right)\left( x-a \right)\]
Opening the brackets and simplifying the terms,
\[\begin{align}
& y-b=\left( \dfrac{\dfrac{ab-ba-{{b}^{2}})}{a+b}}{\dfrac{ab-{{a}^{2}}-ab)}{a+b}} \right)\left( x-a \right) \\
& y-b=\left( \dfrac{\dfrac{-{{b}^{2}}}{a+b}}{\dfrac{-{{a}^{2}}}{a+b}} \right)\left( x-a \right) \\
& y-b=\left( \dfrac{{{b}^{2}}}{{{a}^{2}}} \right)\left( x-a \right) \\
& {{a}^{2}}(y-b)={{b}^{2}}(x-a) \\
& {{a}^{2}}y-{{a}^{2}}b={{b}^{2}}x-{{b}^{2}}a \\
& {{b}^{2}}x-{{a}^{2}}y={{b}^{2}}a-{{a}^{2}}b \\
& {{b}^{2}}x-{{a}^{2}}y=ab(b-a) \\
\end{align}\]
Looking at the given options, we can rewrite the obtained equation as
\[\begin{align}
& -{{b}^{2}}x+{{a}^{2}}y=-ab(b-a) \\
& {{a}^{2}}y-{{b}^{2}}x=ab(a-b) \\
\end{align}\]
Therefore, we get option (a) as the correct answer.
Note: The equation of a straight line passing through the point of intersection of two lines, say A and B can be written as \[A+\lambda B=0\]. Therefore, the equation of the straight line passing through the point of intersection of the given lines $\dfrac{x}{a}+\dfrac{y}{b}-1=0$ and $\dfrac{x}{b}+\dfrac{y}{a}-1=0$ can be written as, $\left( \dfrac{x}{a}+\dfrac{y}{b}-1 \right)+\lambda \left( \dfrac{x}{b}+\dfrac{y}{a}-1 \right)=0$. Since the required straight line passes through point $\left( a,b \right)$, we can substitute the coordinates in the above equation and find the value of $\lambda $. This method is lengthy as it has complex terms.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Physics: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 English: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE