Answer
Verified
445.2k+ views
Hint: Here, we are required to find the value of $\lambda $, where it is given that a tangent touches the circle at point $\left( {a,b} \right)$ and the equations of both the tangent as well as the circle are given. Since, the point of contact is the intersection of both the tangent as well as the circle, it satisfies both the equations. Hence, we will substitute $\left( {x,y} \right) = \left( {a,b} \right)$ in both the equations of the circle as well as the tangent, and then, equating both of them, we will find the required value of $\lambda $.
Complete step-by-step answer:
Equation of circle: \[{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}\], where $r$ is the radius of the circle and $\left( {h,k} \right)$ represents the centre of the circle.
The general equation of a circle is in the form of \[{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}\] , where $r$ is the radius of the circle and $\left( {h,k} \right)$ represents the centre of the circle.
According to the question,
Equation of the circle is \[{x^2} + {y^2} = {r^2}\]
Hence, this can be written in the form of: \[{\left( {x - 0} \right)^2} + {\left( {y - 0} \right)^2} = {r^2}\]
This shows that $\left( {h,k} \right) = \left( {0,0} \right)$
Hence, the centre of the circle lies on the origin.
Now, when a tangent touches the circumference of a circle at point $\left( {a,b} \right)$,
Then, this point should satisfy the equation of the circle as well as the equation of the tangent.
This is because of the fact that this point acts as an intersection between the tangent and the circle, hence, satisfying the equation of both of them.
Therefore, since the equation of the circle is \[{x^2} + {y^2} = {r^2}\] and the tangent passes through it at the point $\left( {a,b} \right)$, hence, substituting $\left( {x,y} \right) = \left( {a,b} \right)$ in the equation of circle, we get,
\[{a^2} + {b^2} = {r^2}\]…………………………$\left( 1 \right)$
Now, according to the question,
Equation of the tangent is $ax + by - \lambda = 0$
Since, the point $\left( {a,b} \right)$ acts as an intersection, it must satisfy the equation of the tangent as well.
Therefore, substituting $\left( {x,y} \right) = \left( {a,b} \right)$ in the equation of the tangent $ax + by - \lambda = 0$, we get,
$a \cdot a + b \cdot b - \lambda = 0$
$ \Rightarrow {a^2} + {b^2} = \lambda $……………………$\left( 2 \right)$
Now, equating the equations $\left( 1 \right)$ and $\left( 2 \right)$, we get,
\[\lambda = {r^2}\]
Therefore, the required value of \[\lambda = {r^2}\]
Hence, option C is the correct answer.
Note: A circle is a shape drawn on a plane which consists of all the points which are equidistant from the given centre. The distance between each point on the circumference of the circle and the centre is called its radius. In a standard form, the equation of a circle is always written in the form of \[{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}\] , where $r$ is the radius of the circle and $\left( {h,k} \right)$ represents the centre of the circle. Also, a tangent drawn to a circle is defined as a straight line which touches the circle at a single point on its circumference. The point where the tangent touches the circle is called the point of contact.
Complete step-by-step answer:
Equation of circle: \[{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}\], where $r$ is the radius of the circle and $\left( {h,k} \right)$ represents the centre of the circle.
The general equation of a circle is in the form of \[{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}\] , where $r$ is the radius of the circle and $\left( {h,k} \right)$ represents the centre of the circle.
According to the question,
Equation of the circle is \[{x^2} + {y^2} = {r^2}\]
Hence, this can be written in the form of: \[{\left( {x - 0} \right)^2} + {\left( {y - 0} \right)^2} = {r^2}\]
This shows that $\left( {h,k} \right) = \left( {0,0} \right)$
Hence, the centre of the circle lies on the origin.
Now, when a tangent touches the circumference of a circle at point $\left( {a,b} \right)$,
Then, this point should satisfy the equation of the circle as well as the equation of the tangent.
This is because of the fact that this point acts as an intersection between the tangent and the circle, hence, satisfying the equation of both of them.
Therefore, since the equation of the circle is \[{x^2} + {y^2} = {r^2}\] and the tangent passes through it at the point $\left( {a,b} \right)$, hence, substituting $\left( {x,y} \right) = \left( {a,b} \right)$ in the equation of circle, we get,
\[{a^2} + {b^2} = {r^2}\]…………………………$\left( 1 \right)$
Now, according to the question,
Equation of the tangent is $ax + by - \lambda = 0$
Since, the point $\left( {a,b} \right)$ acts as an intersection, it must satisfy the equation of the tangent as well.
Therefore, substituting $\left( {x,y} \right) = \left( {a,b} \right)$ in the equation of the tangent $ax + by - \lambda = 0$, we get,
$a \cdot a + b \cdot b - \lambda = 0$
$ \Rightarrow {a^2} + {b^2} = \lambda $……………………$\left( 2 \right)$
Now, equating the equations $\left( 1 \right)$ and $\left( 2 \right)$, we get,
\[\lambda = {r^2}\]
Therefore, the required value of \[\lambda = {r^2}\]
Hence, option C is the correct answer.
Note: A circle is a shape drawn on a plane which consists of all the points which are equidistant from the given centre. The distance between each point on the circumference of the circle and the centre is called its radius. In a standard form, the equation of a circle is always written in the form of \[{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}\] , where $r$ is the radius of the circle and $\left( {h,k} \right)$ represents the centre of the circle. Also, a tangent drawn to a circle is defined as a straight line which touches the circle at a single point on its circumference. The point where the tangent touches the circle is called the point of contact.
Recently Updated Pages
There are two sample of HCI having molarity 1M and class 11 chemistry JEE_Main
For the reaction I + ClO3 + H2SO4 to Cl + HSO4 + I2 class 11 chemistry JEE_Main
What happens to the gravitational force between two class 11 physics NEET
In the reaction 2NH4 + + 6NO3 aq + 4H + aq to 6NO2g class 11 chemistry JEE_Main
A weightless rod is acted upon by upward parallel forces class 11 phy sec 1 JEE_Main
From a uniform circular disc of radius R and mass 9 class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE