Answer
Verified
428.4k+ views
Hint: Equilibrium constant in concentration units i.e., ${K_c}$ is the ratio of product of molar concentration of products to the product of molar concentration of reactants with each concentration term raise to the power equal to stoichiometric coefficient in balanced reversible reaction.
Complete step-by-step answer:The reaction is given as below:
${H_2}(g) + {I_2}(g) \rightleftharpoons 2HI$
Equilibrium constant $({K_c})$ for this reaction is 50.
$\therefore $ ${K_c} = \dfrac{{\left[ {Product} \right]}}{{\left[ {\operatorname{Re} ac\tan t} \right]}}$
$ \Rightarrow $ \[{K_c} = \dfrac{{{{\left[ {HI} \right]}^2}}}{{\left[ {{H_2}} \right]\;\left[ {{I_2}} \right]}}\] $ - \left( 1 \right)$
We know that Concentration $ = \dfrac{{no.\;of\;moles}}{{volume}}$
$\therefore $ Concentration \[\propto \;\dfrac{1}{{volume}}\]
As given in the question, we have changed the volume and hence there will be a change in the value of concentration which will change the value of the equilibrium constant ${K_c}$.
If the volume of the container is reduced to half of its original value.
i.e., initial volume of Container $ = V$
On reducing the volume of Container$ = \dfrac{V}{2} = 0.5V$, the concentration of the container is increased two times.
New concentration of HI i.e., ${[HI]'}$ = $2[HI]$
Similarly, ${[H_2]'}$= $2[H_2]$
And, ${[I_2]'}$ = $2[I_2]$
Thus, the new equilibrium constant ${K_c}^1$ is given by
$K_c^1 = \dfrac{{{{(2[HI])}^2}}}{{2 \times [{H_2}] \times 2[{I_2}]}}$
$K_c^1 = 1 \times \dfrac{{{{[HI]}^2}}}{{[{H_2}] \times [{I_2}]}}$ $ - \left( 2 \right)$
Substituting $\left( 1 \right)\,in\,\left( 2 \right)$
$\therefore $ $K_c^1 = 1 \times {K_c}$
Given equilibrium constant ${K_c}$ $ = 50$
Then, $K_c^1 = 1 \times 50$
$K_c^1 = 50$
Thus, the value of the new equilibrium constant is 50.
Additional information: It can also be seen in another way that change in number of moles $(\Delta n)$ of the reaction is zero.
i.e.$1{H_2}(g) + 1{I_2}(g) \rightleftharpoons 2HI$
$\Delta ng = \Sigma {n_p} - {\rm E}{n_r} = 2 - 2$
$ = 0$
Hence, there would be no impact of change in concentration on the equilibrium constant ${K_c}$when $\Delta {n_g} = 0$. Hence it will remain unaffected for any change in concentration.
Hence, the correct option is (B).
Note: The value of equilibrium constant is only temperature dependent. It is not dependent on the values of concentration. The value of reaction quotient is concentration dependent. It is compared with the value of equilibrium constant to predict the extent of the reaction. For reactions involving $\Delta {n_g} = 0$ , the values of all the equilibrium constants ${K_p},{K_c},{K_n},{K_x}$ are same.
Complete step-by-step answer:The reaction is given as below:
${H_2}(g) + {I_2}(g) \rightleftharpoons 2HI$
Equilibrium constant $({K_c})$ for this reaction is 50.
$\therefore $ ${K_c} = \dfrac{{\left[ {Product} \right]}}{{\left[ {\operatorname{Re} ac\tan t} \right]}}$
$ \Rightarrow $ \[{K_c} = \dfrac{{{{\left[ {HI} \right]}^2}}}{{\left[ {{H_2}} \right]\;\left[ {{I_2}} \right]}}\] $ - \left( 1 \right)$
We know that Concentration $ = \dfrac{{no.\;of\;moles}}{{volume}}$
$\therefore $ Concentration \[\propto \;\dfrac{1}{{volume}}\]
As given in the question, we have changed the volume and hence there will be a change in the value of concentration which will change the value of the equilibrium constant ${K_c}$.
If the volume of the container is reduced to half of its original value.
i.e., initial volume of Container $ = V$
On reducing the volume of Container$ = \dfrac{V}{2} = 0.5V$, the concentration of the container is increased two times.
New concentration of HI i.e., ${[HI]'}$ = $2[HI]$
Similarly, ${[H_2]'}$= $2[H_2]$
And, ${[I_2]'}$ = $2[I_2]$
Thus, the new equilibrium constant ${K_c}^1$ is given by
$K_c^1 = \dfrac{{{{(2[HI])}^2}}}{{2 \times [{H_2}] \times 2[{I_2}]}}$
$K_c^1 = 1 \times \dfrac{{{{[HI]}^2}}}{{[{H_2}] \times [{I_2}]}}$ $ - \left( 2 \right)$
Substituting $\left( 1 \right)\,in\,\left( 2 \right)$
$\therefore $ $K_c^1 = 1 \times {K_c}$
Given equilibrium constant ${K_c}$ $ = 50$
Then, $K_c^1 = 1 \times 50$
$K_c^1 = 50$
Thus, the value of the new equilibrium constant is 50.
Additional information: It can also be seen in another way that change in number of moles $(\Delta n)$ of the reaction is zero.
i.e.$1{H_2}(g) + 1{I_2}(g) \rightleftharpoons 2HI$
$\Delta ng = \Sigma {n_p} - {\rm E}{n_r} = 2 - 2$
$ = 0$
Hence, there would be no impact of change in concentration on the equilibrium constant ${K_c}$when $\Delta {n_g} = 0$. Hence it will remain unaffected for any change in concentration.
Hence, the correct option is (B).
Note: The value of equilibrium constant is only temperature dependent. It is not dependent on the values of concentration. The value of reaction quotient is concentration dependent. It is compared with the value of equilibrium constant to predict the extent of the reaction. For reactions involving $\Delta {n_g} = 0$ , the values of all the equilibrium constants ${K_p},{K_c},{K_n},{K_x}$ are same.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE