Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

The equipotential surface of an electric dipole is
A. Sphere whose centre coincides with the centre of the electric dipole
B. A plane surface inclined at an angle of 45° with the axis of the electric dipole
C. A plane surface passing through the centre of the electric dipole and perpendicular to the axis of the electric dipole
D. Any plane surface parallels the axis of the electric dipole.

seo-qna
SearchIcon
Answer
VerifiedVerified
461.4k+ views
Hint: The equipotential surface of an electric dipole is an imaginary surface around a point charge of an electric dipole, which has equal potential at every point.

Complete step by step answer:
The equipotential surfaces of an electric dipole are shown in the figure since the distance of each point on a plane passing through the centre of the axis of the electric dipole is equal to the potential throughout the plane is zero. Hence it is over one possible equipotential surface.
Figure: (Dotted lines are representing the equipotential surface
seo images

Some of the points to be remembered regarding the equipotential surface are as follows:
• Potential energy U = constant for point charge q on Equipotential surface.
• The surface of a conductor at equilibrium is at the equipotential surface.
• Electric field vectors (tangents to field lines) are perpendicular to an equipotential surface.
• Electrostatic force does zero work on point Charge q moving on the equipotential surface.
• The electric field exerts a force on a positive (negative) point charge q in the direction of steepest Potential drop (rise).
• When a positive (negative) point charge q moves from a region of high potential to a region of low potential, the Electric field does positive (negative) work on it. In the process, the potential energy decreases (increases).
So, the correct answer is “Option C”.

Note:
An equipotential surface is a surface over which the potential due to any charge configuration is the same throughout. The equipotential surfaces are three-dimensional imaginary surfaces.