Answer
Verified
428.7k+ views
Hint: Fermi energy is defined as the energy difference between the highest occupied state and the lowest occupied state. The density of the occupied states is the product of the energy level of the occupied state and the probability of being occupied by the electron.
Formula used:
(1) The formula of the energy is given by
$E = {E_F} + kT\ln \left( {{P^{ - 1}} - 1} \right)$
Where $E$ is the energy, ${E_F}$ is the fermi energy of the copper, $k$ is the Boltzmann constant and $P$ is the probability.
(2) The density of the state is given by
$N\left( E \right) = C{E^{\frac{1}{2}}}$
Where $N\left( E \right)$ is the density of the state and $C$ is the constant.
(3) The density occupied by the states
${N_0}\left( E \right) = P \times N\left( E \right)$
Where ${N_0}\left( E \right)$ is the density occupied by the state.
Complete step by step answer:
Given: Fermi energy for copper,${E_F} = 7.00\,eV$
The temperature, $T = 1000\,K$
Probability being occupied by electron, $P = 0.009$
(a) Using the formula of the energy,
$E = {E_F} + kT\ln \left( {{P^{ - 1}} - 1} \right)$
Substituting the known values in the above formula,
$E = 0.07 + \left( {8.62 \times {{10}^{ - 5}} \times 1000} \right)\ln \left( {\dfrac{1}{{0.009}} - 1} \right)$
By doing the basic arithmetic operations, we get
$E = 6.81\,eV$
(b) Let us use the formula of the density of states,
$N\left( E \right) = C{E^{\frac{1}{2}}}$
$N\left( E \right) = 6.81\; \times \;{10^{27}} \times {\left( {6.81} \right)^{\frac{1}{2}}}$
By the simplification of the above step, we get
$N\left( E \right) = 1.77 \times {10^{28}}\,{m^{ - 3}}\,e{V^{ - 1}}$
(c) Let us use the formula of the density of the state,
${N_0}\left( E \right) = P \times N\left( E \right)$
${N_0}\left( E \right) = 0.900 \times 1.77 \times {10^8}$
By doing multiplication in the above step, we get
${N_0}\left( E \right) = 1.59 \times {10^{28}}{m^{ - 3}}.eV$
Hence, the density of the occupied state is $1.59 \times {10^{28}}{m^{ - 3}}.eV$.
Note: $k$ , substituted in the above calculation is the Boltzmann constant and its value is equal to $8.62 \times {10^{ - 5}}$ . Remember the formula of the density of the free state and the occupied state since it differs by energy value is used in free state and the free state value is substituted in the occupied state.
Formula used:
(1) The formula of the energy is given by
$E = {E_F} + kT\ln \left( {{P^{ - 1}} - 1} \right)$
Where $E$ is the energy, ${E_F}$ is the fermi energy of the copper, $k$ is the Boltzmann constant and $P$ is the probability.
(2) The density of the state is given by
$N\left( E \right) = C{E^{\frac{1}{2}}}$
Where $N\left( E \right)$ is the density of the state and $C$ is the constant.
(3) The density occupied by the states
${N_0}\left( E \right) = P \times N\left( E \right)$
Where ${N_0}\left( E \right)$ is the density occupied by the state.
Complete step by step answer:
Given: Fermi energy for copper,${E_F} = 7.00\,eV$
The temperature, $T = 1000\,K$
Probability being occupied by electron, $P = 0.009$
(a) Using the formula of the energy,
$E = {E_F} + kT\ln \left( {{P^{ - 1}} - 1} \right)$
Substituting the known values in the above formula,
$E = 0.07 + \left( {8.62 \times {{10}^{ - 5}} \times 1000} \right)\ln \left( {\dfrac{1}{{0.009}} - 1} \right)$
By doing the basic arithmetic operations, we get
$E = 6.81\,eV$
(b) Let us use the formula of the density of states,
$N\left( E \right) = C{E^{\frac{1}{2}}}$
$N\left( E \right) = 6.81\; \times \;{10^{27}} \times {\left( {6.81} \right)^{\frac{1}{2}}}$
By the simplification of the above step, we get
$N\left( E \right) = 1.77 \times {10^{28}}\,{m^{ - 3}}\,e{V^{ - 1}}$
(c) Let us use the formula of the density of the state,
${N_0}\left( E \right) = P \times N\left( E \right)$
${N_0}\left( E \right) = 0.900 \times 1.77 \times {10^8}$
By doing multiplication in the above step, we get
${N_0}\left( E \right) = 1.59 \times {10^{28}}{m^{ - 3}}.eV$
Hence, the density of the occupied state is $1.59 \times {10^{28}}{m^{ - 3}}.eV$.
Note: $k$ , substituted in the above calculation is the Boltzmann constant and its value is equal to $8.62 \times {10^{ - 5}}$ . Remember the formula of the density of the free state and the occupied state since it differs by energy value is used in free state and the free state value is substituted in the occupied state.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE