Answer
Verified
405.9k+ views
Hint :To know the first spectral line in the Pfund series of hydrogen spectrum by Rydberg constant, we should know the formula of Rydberg constant. And for the Rydberg constant, the first spectral line is 6.
Complete Step By Step Answer:
A series of wavenumber in the Pfund series of the Hydrogen spectrum is given by $ {R_H}[\dfrac{1}{{{5^2}}} - \dfrac{1}{{{n^2}}}] $ , where $ {R_H} $ si the Rydberg Constant for hydrogen and $ n $ is an integer greater than 5.
Now, the first spectral line $ n\, = 6 $ .
$ \dfrac{1}{\lambda } = {R_H}[\dfrac{1}{{{5^2}}} - \dfrac{1}{{{6^2}}}] = {R_H}[\dfrac{1}{{25}} - \dfrac{1}{{36}}] = \dfrac{{11{R_H}}}{{900}} $
The spectral series is broken into corresponding series based on the electron transition to lower energy state. The greek alphabets are used within the series to segregate the spectral lines of corresponding energy. The spectral series of Hydrogen are: The series was discovered during the years 1906-1914, by Theodore Lyman.
Hence, the correct option is C. $ \dfrac{{11{R_H}}}{{900}} $
Note :
Now, a question arises here: why are spectral lines grouped into series? So, because the energy of each state is fixed, the energy difference between them is fixed, and the transition will always produce a photon with the same energy. The spectral lines are grouped into series according to $ n $ .
Complete Step By Step Answer:
A series of wavenumber in the Pfund series of the Hydrogen spectrum is given by $ {R_H}[\dfrac{1}{{{5^2}}} - \dfrac{1}{{{n^2}}}] $ , where $ {R_H} $ si the Rydberg Constant for hydrogen and $ n $ is an integer greater than 5.
Now, the first spectral line $ n\, = 6 $ .
$ \dfrac{1}{\lambda } = {R_H}[\dfrac{1}{{{5^2}}} - \dfrac{1}{{{6^2}}}] = {R_H}[\dfrac{1}{{25}} - \dfrac{1}{{36}}] = \dfrac{{11{R_H}}}{{900}} $
The spectral series is broken into corresponding series based on the electron transition to lower energy state. The greek alphabets are used within the series to segregate the spectral lines of corresponding energy. The spectral series of Hydrogen are: The series was discovered during the years 1906-1914, by Theodore Lyman.
Hence, the correct option is C. $ \dfrac{{11{R_H}}}{{900}} $
Note :
Now, a question arises here: why are spectral lines grouped into series? So, because the energy of each state is fixed, the energy difference between them is fixed, and the transition will always produce a photon with the same energy. The spectral lines are grouped into series according to $ n $ .
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE