Answer
Verified
495.9k+ views
Hint – First of all, read the question carefully and write the things given in the question i.e. focal distance of the parabola is $4$ i.e. ${\text{D = 4}}$ which is the distance between the focus and that particular point on the parabola and let the given point and coordinates be ${\text{P}}\left( {x,y} \right)$. The equation of parabola i.e. ${y^2} = 8x$. Now, this will give us a clear picture to understand the question. Thus we will get our desired answer.
“Complete step-by-step answer:”
Now, we will find the coordinates of that particular point. We will use the standard parabola equation i.e. ${y^2} = 4ax$ to solve this given problem.
So, compare the given equation ${y^2} = 8x$ with the standard equation of parabola i.e. ${y^2} = 4ax$, then we will find that ${\text{a = 2}}$ by comparing $8x{\text{ and }}4ax$.
As we know that the standard focus of the parabola is $\left( {a,0} \right)$. Hence, the focus ${\text{F}}$ of the given parabola is $\left( {2,0} \right)$.
According to the question ${\text{D = 4}}$ and we assumed the point on the locus as ${\text{P}}\left( {x,y} \right)$.
By using the distance the formula on ${\text{F}}\left( {2,0} \right){\text{ and P}}\left( {x,y} \right)$ we will get ,
${\text{4 = }}\sqrt {{{\left( {x - 2} \right)}^2} + {{\left( {y - 0} \right)}^2}} $
By squaring on both sides,
$16 = {\left( {x - 2} \right)^2} + {\left( y \right)^2}$
Now, put the value of ${y^2}$ as $8x$ which is given in question and expand the equation ${\left( {x - 2} \right)^2}$
$16 = {x^2} + 4 - 4x + 8x$
${x^2} + 4x - 12 = 0$
By using factorisation method,
${x^2} + 6x - 2x - 12 = 0$
$x\left( {x + 6} \right) - 2\left( {x + 6} \right) = 0$
$\left( {x - 2} \right)\left( {x + 6} \right) = 0$
This implies that $x$ can be $2, - 6$ but according to the equation ${y^2} = 4ax$, $x$ cannot be negative.
So, we left with only $x = 2$
Now, by putting the value of $x$ in ${y^2} = 8x$
We will get,
${y^2} = 8 \times 2$
${y^2} = 16$
Apply square root both sides, we will get
$y = 4, - 4$
So, the coordinates are $\left( {2,4} \right){\text{ and }}\left( {2, - 4} \right)$
Note – In this type of questions, firstly we should compare the given equation with the standard parabolic equations which are:
$
\left( 1 \right){\text{ }}{y^2}{\text{ = 4}}ax{\text{ }} \\
\left( 2 \right){\text{ }}{{\text{y}}^2} = - 4ax \\
\left( 3 \right){\text{ }}{x^2} = 4ay \\
\left( 4 \right){\text{ }}{x^2} = - 4ay \\
$
Then simply putting those values in the equation we get our required answer.
Do note that the distance formula between the two points i.e. $\left( {{x_1},{y_1}} \right){\text{ and }}\left( {{x_2},{y_2}} \right)$ is:
$\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} = {\text{ Distance between them }}$ .
“Complete step-by-step answer:”
Now, we will find the coordinates of that particular point. We will use the standard parabola equation i.e. ${y^2} = 4ax$ to solve this given problem.
So, compare the given equation ${y^2} = 8x$ with the standard equation of parabola i.e. ${y^2} = 4ax$, then we will find that ${\text{a = 2}}$ by comparing $8x{\text{ and }}4ax$.
As we know that the standard focus of the parabola is $\left( {a,0} \right)$. Hence, the focus ${\text{F}}$ of the given parabola is $\left( {2,0} \right)$.
According to the question ${\text{D = 4}}$ and we assumed the point on the locus as ${\text{P}}\left( {x,y} \right)$.
By using the distance the formula on ${\text{F}}\left( {2,0} \right){\text{ and P}}\left( {x,y} \right)$ we will get ,
${\text{4 = }}\sqrt {{{\left( {x - 2} \right)}^2} + {{\left( {y - 0} \right)}^2}} $
By squaring on both sides,
$16 = {\left( {x - 2} \right)^2} + {\left( y \right)^2}$
Now, put the value of ${y^2}$ as $8x$ which is given in question and expand the equation ${\left( {x - 2} \right)^2}$
$16 = {x^2} + 4 - 4x + 8x$
${x^2} + 4x - 12 = 0$
By using factorisation method,
${x^2} + 6x - 2x - 12 = 0$
$x\left( {x + 6} \right) - 2\left( {x + 6} \right) = 0$
$\left( {x - 2} \right)\left( {x + 6} \right) = 0$
This implies that $x$ can be $2, - 6$ but according to the equation ${y^2} = 4ax$, $x$ cannot be negative.
So, we left with only $x = 2$
Now, by putting the value of $x$ in ${y^2} = 8x$
We will get,
${y^2} = 8 \times 2$
${y^2} = 16$
Apply square root both sides, we will get
$y = 4, - 4$
So, the coordinates are $\left( {2,4} \right){\text{ and }}\left( {2, - 4} \right)$
Note – In this type of questions, firstly we should compare the given equation with the standard parabolic equations which are:
$
\left( 1 \right){\text{ }}{y^2}{\text{ = 4}}ax{\text{ }} \\
\left( 2 \right){\text{ }}{{\text{y}}^2} = - 4ax \\
\left( 3 \right){\text{ }}{x^2} = 4ay \\
\left( 4 \right){\text{ }}{x^2} = - 4ay \\
$
Then simply putting those values in the equation we get our required answer.
Do note that the distance formula between the two points i.e. $\left( {{x_1},{y_1}} \right){\text{ and }}\left( {{x_2},{y_2}} \right)$ is:
$\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} = {\text{ Distance between them }}$ .
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE