The focal length of the combination of two convex lenses in contact is \[f\] and if they are separated by a distance, then focal length of the combination is \[{f_1}\]. The correct statement is
(A) \[f > {f_1}\]
(B) \[f = {f_1}\]
(C) \[f < {f_1}\]
(D) \[f{f_1} = 1\]
Answer
Verified
114.9k+ views
Hint: To solve this question, we need to use the formula for the combination of lenses for the two cases. From there we will have two equations, which can be compared to get the required result.
Formula Used
1. \[\dfrac{1}{{{f_e}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}}\] where\[{f_e} = \] focal length of combination of two lenses of focal lengths \[{f_1}\] and \[{f_2}\] in contact with each other
2. \[\dfrac{1}{{{f_e}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}} - \dfrac{d}{{{f_1}{f_2}}}\] where \[{f_e} = \] focal length of combination of two lenses of focal lengths \[{f_1}\] and \[{f_2}\] separated by distance \[d\]
Complete step-by-step solution
As we know, the equivalent focal length of the combination of two lenses in contact is given by the relation
\[\dfrac{1}{{{f_e}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}}\] (1)
Also, we know that the equivalent focal length of the combination of two lenses separated by a distance d is given by the relation
\[\dfrac{1}{{{f_e}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}} - \dfrac{d}{{{f_1}{f_2}}}\] (2)
Let the focal lengths of the two convex lenses be \[{f_a}\] and \[{f_b}\].
According to the question, the focal length of the combination of the two convex lenses in contact is \[f\]
So, from (1) we have
\[\dfrac{1}{f} = \dfrac{1}{{{f_a}}} + \dfrac{1}{{{f_b}}}\] (3)
Also, if they are separated by a distance, then the focal length of the combination is\[{f_1}\]. Let \[x\] be the distance between the two convex lenses. Then from (2) we have
\[\dfrac{1}{{{f_1}}} = \dfrac{1}{{{f_a}}} + \dfrac{1}{{{f_b}}} - \dfrac{d}{{{f_a}{f_b}}}\] (4)
As we know that the focal length of a convex lens is positive .Since both the lenses are convex, so both \[{f_a}\] and \[{f_b}\] are positive. This means that the product \[{f_a}{f_b}\] in the equation (4) is positive.
From (3) and (4), we have
\[\dfrac{1}{{{f_1}}} = \dfrac{1}{f} - \dfrac{d}{{{f_a}{f_b}}}\]
Since \[{f_a}{f_b} > 0\]
\[\dfrac{1}{{{f_1}}} < \dfrac{1}{f}\]
Taking reciprocal, we get
\[{f_1} > f\]
which can also be written as,
\[f < {f_1}\]
Hence, the correct answer is option C, \[f < {f_1}\]
Note: Be careful to reverse the sign of the inequality while taking the reciprocal. It is a common mistake of directly taking the reciprocal without reversing the inequality sign. So, the rules of the algebra of inequalities should be kept in mind whenever dealing with inequalities.
Formula Used
1. \[\dfrac{1}{{{f_e}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}}\] where\[{f_e} = \] focal length of combination of two lenses of focal lengths \[{f_1}\] and \[{f_2}\] in contact with each other
2. \[\dfrac{1}{{{f_e}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}} - \dfrac{d}{{{f_1}{f_2}}}\] where \[{f_e} = \] focal length of combination of two lenses of focal lengths \[{f_1}\] and \[{f_2}\] separated by distance \[d\]
Complete step-by-step solution
As we know, the equivalent focal length of the combination of two lenses in contact is given by the relation
\[\dfrac{1}{{{f_e}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}}\] (1)
Also, we know that the equivalent focal length of the combination of two lenses separated by a distance d is given by the relation
\[\dfrac{1}{{{f_e}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}} - \dfrac{d}{{{f_1}{f_2}}}\] (2)
Let the focal lengths of the two convex lenses be \[{f_a}\] and \[{f_b}\].
According to the question, the focal length of the combination of the two convex lenses in contact is \[f\]
So, from (1) we have
\[\dfrac{1}{f} = \dfrac{1}{{{f_a}}} + \dfrac{1}{{{f_b}}}\] (3)
Also, if they are separated by a distance, then the focal length of the combination is\[{f_1}\]. Let \[x\] be the distance between the two convex lenses. Then from (2) we have
\[\dfrac{1}{{{f_1}}} = \dfrac{1}{{{f_a}}} + \dfrac{1}{{{f_b}}} - \dfrac{d}{{{f_a}{f_b}}}\] (4)
As we know that the focal length of a convex lens is positive .Since both the lenses are convex, so both \[{f_a}\] and \[{f_b}\] are positive. This means that the product \[{f_a}{f_b}\] in the equation (4) is positive.
From (3) and (4), we have
\[\dfrac{1}{{{f_1}}} = \dfrac{1}{f} - \dfrac{d}{{{f_a}{f_b}}}\]
Since \[{f_a}{f_b} > 0\]
\[\dfrac{1}{{{f_1}}} < \dfrac{1}{f}\]
Taking reciprocal, we get
\[{f_1} > f\]
which can also be written as,
\[f < {f_1}\]
Hence, the correct answer is option C, \[f < {f_1}\]
Note: Be careful to reverse the sign of the inequality while taking the reciprocal. It is a common mistake of directly taking the reciprocal without reversing the inequality sign. So, the rules of the algebra of inequalities should be kept in mind whenever dealing with inequalities.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Degree of Dissociation and Its Formula With Solved Example for JEE
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
Electric field due to uniformly charged sphere class 12 physics JEE_Main