
The force between two short electric dipoles placed on the same axis at a distance $R$ varies as?
A) ${R^{ - 1}}$
B) ${R^{ - 2}}$
C) ${R^{ - 3}}$
D) ${R^{ - 4}}$
Answer
143.7k+ views
Hint: Force acting between two electric dipoles depends on the potential energy of the electric dipoles. If the dipole moment is constant, the net force is zero, because the charges get pulled equally and oppositely.
Complete step by step solution:
Here it is given in the question that two short electric dipoles on the same axis are at a distance of $R$ from each other. We are asked to find how the force acting in between them varies in the term of $R$.
We know the electric produced by an electric dipole in a n axial position is given by the equation,
$E = \dfrac{{2KP}}{{{R^3}}}$
Where, $K$ is the electrostatic constant.
The value of the electrostatic constant is given by, $K = \dfrac{1}{{4\pi {\varepsilon _0}}}$
$P$ is the electric dipole moment.
Now, potential energy of the dipole, $U = - PE\cos \theta $
Where, $\theta $ is the angle between the electric field and dipole, here it is placed in the same axis and thus the angle between the electric field and dipole will be zero.
$ \Rightarrow U = - PE\cos 0$
$ \therefore U = - PE$
Substituting the value of $E$ in this equation, we get,
$ \therefore U = - P \times \dfrac{{2KP'}}{{{R^3}}}$
We need to find the value of force acting between the two electric dipoles.
Force acting is given by the equation,
$F = - \dfrac{{dU}}{{dR}}$
Applying the value of the potential energy to this equation, we get,
$ \Rightarrow F = - \dfrac{d}{{dR}}\left( {\dfrac{{ - 2KPP'}}{{{R^3}}}} \right)$
$ \Rightarrow F = 2KPP'\dfrac{d}{{dR}}\left( {\dfrac{1}{{{R^3}}}} \right)$
$ \therefore F = - 6KPP'\dfrac{1}{{{R^4}}}$
There for the force between two short electric dipole placed on the same axis at a distance $R$ is proportional to $\dfrac{1}{{{R^4}}}$ or ${R^{ - 4}}.$
So the final answer is option (D), ${R^{ - 4}}$.
Note: An electric dipole is defined as a couple of opposite charges $q$ and $ - q$separated by a distance $R$. By default, the direction of electric dipoles in space is always from negative charge $ - q$ to positive charge $q$. The midpoint $q$ and $ - q$ is called the centre of the dipole.
Complete step by step solution:
Here it is given in the question that two short electric dipoles on the same axis are at a distance of $R$ from each other. We are asked to find how the force acting in between them varies in the term of $R$.
We know the electric produced by an electric dipole in a n axial position is given by the equation,
$E = \dfrac{{2KP}}{{{R^3}}}$
Where, $K$ is the electrostatic constant.
The value of the electrostatic constant is given by, $K = \dfrac{1}{{4\pi {\varepsilon _0}}}$
$P$ is the electric dipole moment.
Now, potential energy of the dipole, $U = - PE\cos \theta $
Where, $\theta $ is the angle between the electric field and dipole, here it is placed in the same axis and thus the angle between the electric field and dipole will be zero.
$ \Rightarrow U = - PE\cos 0$
$ \therefore U = - PE$
Substituting the value of $E$ in this equation, we get,
$ \therefore U = - P \times \dfrac{{2KP'}}{{{R^3}}}$
We need to find the value of force acting between the two electric dipoles.
Force acting is given by the equation,
$F = - \dfrac{{dU}}{{dR}}$
Applying the value of the potential energy to this equation, we get,
$ \Rightarrow F = - \dfrac{d}{{dR}}\left( {\dfrac{{ - 2KPP'}}{{{R^3}}}} \right)$
$ \Rightarrow F = 2KPP'\dfrac{d}{{dR}}\left( {\dfrac{1}{{{R^3}}}} \right)$
$ \therefore F = - 6KPP'\dfrac{1}{{{R^4}}}$
There for the force between two short electric dipole placed on the same axis at a distance $R$ is proportional to $\dfrac{1}{{{R^4}}}$ or ${R^{ - 4}}.$
So the final answer is option (D), ${R^{ - 4}}$.
Note: An electric dipole is defined as a couple of opposite charges $q$ and $ - q$separated by a distance $R$. By default, the direction of electric dipoles in space is always from negative charge $ - q$ to positive charge $q$. The midpoint $q$ and $ - q$ is called the centre of the dipole.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Physics Average Value and RMS Value JEE Main 2025

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
