Answer
Verified
396.5k+ views
Hint: Initially there are two-point charges and while calculating coulombic force between two charges we take the distance between the two charges, when the point charges are replaced by conducting spheres of some radius the charge remains the same but the distance changes.
Complete step by step answer:
From coulomb’s law \[F=\dfrac{k{{q}_{1}}{{q}_{2}}}{{{r}^{2}}}\], where k is a constant and r is the separation between the two charges which is given as 1m. Now, we replace these point charges by two conducting spheres, the charges remain same that is \[{{q}_{1}}\And {{q}_{2}}\] and the spheres are conducting.
Since the distance is always calculated from the centre, here the distance between the two charges increases and thus the force between them decreases.
Therefore, option B is the correct answer.
Note:
Any excess charge on a solid conductor resides entirely on the outer surface of the conductor, because of this the electric field inside the conductor is zero since the charges are free to move through the conductor. If the surface of the conductor is smooth and regular, like a sphere, the charges will push each other away until they all end up exactly the same distance from each other.
Complete step by step answer:
From coulomb’s law \[F=\dfrac{k{{q}_{1}}{{q}_{2}}}{{{r}^{2}}}\], where k is a constant and r is the separation between the two charges which is given as 1m. Now, we replace these point charges by two conducting spheres, the charges remain same that is \[{{q}_{1}}\And {{q}_{2}}\] and the spheres are conducting.
Since the distance is always calculated from the centre, here the distance between the two charges increases and thus the force between them decreases.
Therefore, option B is the correct answer.
Note:
Any excess charge on a solid conductor resides entirely on the outer surface of the conductor, because of this the electric field inside the conductor is zero since the charges are free to move through the conductor. If the surface of the conductor is smooth and regular, like a sphere, the charges will push each other away until they all end up exactly the same distance from each other.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE