The formation of cyanohydrin from ketone is an example of:
[A] Electrophilic addition
[B] Nucleophilic addition
[C] Nucleophilic substitution
[D] Electrophilic addition
Answer
Verified
481.5k+ views
Hint:
To form cyanohydrin from ketone, as we can assume from the name itself, we will need a cyanide group. Cyanide can act as a nucleophile. As –OH is a bad leaving group, there will be no removal of a leaving group.
Complete step by step answer:
Before going into the formation of cyanohydrin from ketone, we will discuss what electrophilic and nucleophilic addition and substitution reactions are.
We know that electrophiles are electron deficient species i.e. they can accept a pair of electrons readily and nucleophiles are electron rich species i.e. they can donate a pair of electrons.
Electrophilic addition is the addition reaction where the group which is being added is an electrophile i.e. accepts a pair of electrons and nucleophilic addition is the addition reaction where the attacking group is a nucleophile i.e. it will donate a pair of electrons.
Similarly, electrophilic substitution is a reaction where the leaving group is substituted by an electrophile and nucleophilic substitution is a substitution reaction where the leaving group is replaced by the nucleophile by attacking on the positively charged atom to which the leaving group is attached.
To form cyanohydrin from ketone, we need a ketone and hydrogen cyanide.
The cyanide ion acts as a nucleophile which forms a bond with the electrophilic carbon centre of the ketone forming hydroxyacetonitrile which is commonly known as cyanohydrin. We can draw the mechanism of the reaction as-
The alkoxide anion is protonated which regenerates the cyanide ion to continue the reaction.
Here, as we can see a nucleophile attacks the electrophilic centre and as there is no substitution, it is just addition therefore, this reaction is a nucleophilic addition.
Therefore, the correct answer is option [B] Nucleophilic addition.
Note:
As hydrogen cyanide is an acid itself, it will need a base to take its proton which will leave behind a cyanide anion. The carbon centre of the cyanide anion will act as a nucleophile. If base is absent, the reaction proceeds at a very slow rate.
To form cyanohydrin from ketone, as we can assume from the name itself, we will need a cyanide group. Cyanide can act as a nucleophile. As –OH is a bad leaving group, there will be no removal of a leaving group.
Complete step by step answer:
Before going into the formation of cyanohydrin from ketone, we will discuss what electrophilic and nucleophilic addition and substitution reactions are.
We know that electrophiles are electron deficient species i.e. they can accept a pair of electrons readily and nucleophiles are electron rich species i.e. they can donate a pair of electrons.
Electrophilic addition is the addition reaction where the group which is being added is an electrophile i.e. accepts a pair of electrons and nucleophilic addition is the addition reaction where the attacking group is a nucleophile i.e. it will donate a pair of electrons.
Similarly, electrophilic substitution is a reaction where the leaving group is substituted by an electrophile and nucleophilic substitution is a substitution reaction where the leaving group is replaced by the nucleophile by attacking on the positively charged atom to which the leaving group is attached.
To form cyanohydrin from ketone, we need a ketone and hydrogen cyanide.
The cyanide ion acts as a nucleophile which forms a bond with the electrophilic carbon centre of the ketone forming hydroxyacetonitrile which is commonly known as cyanohydrin. We can draw the mechanism of the reaction as-
The alkoxide anion is protonated which regenerates the cyanide ion to continue the reaction.
Here, as we can see a nucleophile attacks the electrophilic centre and as there is no substitution, it is just addition therefore, this reaction is a nucleophilic addition.
Therefore, the correct answer is option [B] Nucleophilic addition.
Note:
As hydrogen cyanide is an acid itself, it will need a base to take its proton which will leave behind a cyanide anion. The carbon centre of the cyanide anion will act as a nucleophile. If base is absent, the reaction proceeds at a very slow rate.
Recently Updated Pages
Using the following information to help you answer class 12 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
In case of conflict between fundamental rights of citizens class 7 social science CBSE
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
Complete the letter given below written to your Principal class null english null
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Draw a labelled sketch of the human eye class 12 physics CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
What are the major means of transport Explain each class 12 social science CBSE