Answer
Verified
471.3k+ views
Hint: Study about the centripetal force and the gravitational force. Study how the satellite or any object moving in a circular direction around another object works. Think about which critical velocity you are asked by looking at the equations given as options.
Formula used:
$g=\dfrac{GM}{{{R}^{2}}}$
${{V}_{c}}^{2}=\dfrac{GM}{R}$
Complete step by step answer:
To put a satellite into a stable orbit around earth we gave them a constant horizontal velocity. The minimum velocity required to make them orbit in the stable orbit is called the critical velocity.
Consider an object of mass m orbiting another object of mass M. For the circular motion we need a centripetal force. In this case we have the necessary centripetal force due to the gravitational attraction.
Let the orbiting object is at a distance R from the object in the centre.
Now, for the motion to be stable the centripetal force should be equal to the gravitational attraction.
$\begin{align}
& \text{centripetal force = gravitational force} \\
& \dfrac{m{{V}_{c}}^{2}}{R}=G\dfrac{Mm}{{{R}^{2}}} \\
& {{V}_{c}}^{2}=\dfrac{GM}{R} \\
\end{align}$
Where, G is the gravitational constant and ${{V}_{c}}$ is the critical velocity of the object.
Now, we can express the acceleration due to gravity as
$\begin{align}
& g=\dfrac{GM}{{{R}^{2}}} \\
& \text{so,} \\
& G=\dfrac{g{{R}^{2}}}{M} \\
\end{align}$
Now, putting the value of G in terms of g we get that,
$\begin{align}
& {{V}_{c}}^{2}=\dfrac{GM}{R} \\
& {{V}_{c}}^{2}=\dfrac{g{{R}^{2}}}{M}\dfrac{M}{R} \\
& {{V}_{c}}^{2}=gR \\
& {{V}_{c}}=\sqrt{gR} \\
\end{align}$
So, the correct option is (D)
Note: Critical velocity can also be defined as the maximum velocity with which a liquid can flow through a tube without being turbulent.
${{V}_{c}}=\dfrac{{{R}_{e}}\eta }{\rho r}$
Where, ${{R}_{e}}$is the Reynolds number, $\eta $ is the viscosity, $\rho $is the density of the fluid and r is the radius of the tube.
Do not confuse this critical velocity of fluid with the above critical velocity for circular motion.
Formula used:
$g=\dfrac{GM}{{{R}^{2}}}$
${{V}_{c}}^{2}=\dfrac{GM}{R}$
Complete step by step answer:
To put a satellite into a stable orbit around earth we gave them a constant horizontal velocity. The minimum velocity required to make them orbit in the stable orbit is called the critical velocity.
Consider an object of mass m orbiting another object of mass M. For the circular motion we need a centripetal force. In this case we have the necessary centripetal force due to the gravitational attraction.
Let the orbiting object is at a distance R from the object in the centre.
Now, for the motion to be stable the centripetal force should be equal to the gravitational attraction.
$\begin{align}
& \text{centripetal force = gravitational force} \\
& \dfrac{m{{V}_{c}}^{2}}{R}=G\dfrac{Mm}{{{R}^{2}}} \\
& {{V}_{c}}^{2}=\dfrac{GM}{R} \\
\end{align}$
Where, G is the gravitational constant and ${{V}_{c}}$ is the critical velocity of the object.
Now, we can express the acceleration due to gravity as
$\begin{align}
& g=\dfrac{GM}{{{R}^{2}}} \\
& \text{so,} \\
& G=\dfrac{g{{R}^{2}}}{M} \\
\end{align}$
Now, putting the value of G in terms of g we get that,
$\begin{align}
& {{V}_{c}}^{2}=\dfrac{GM}{R} \\
& {{V}_{c}}^{2}=\dfrac{g{{R}^{2}}}{M}\dfrac{M}{R} \\
& {{V}_{c}}^{2}=gR \\
& {{V}_{c}}=\sqrt{gR} \\
\end{align}$
So, the correct option is (D)
Note: Critical velocity can also be defined as the maximum velocity with which a liquid can flow through a tube without being turbulent.
${{V}_{c}}=\dfrac{{{R}_{e}}\eta }{\rho r}$
Where, ${{R}_{e}}$is the Reynolds number, $\eta $ is the viscosity, $\rho $is the density of the fluid and r is the radius of the tube.
Do not confuse this critical velocity of fluid with the above critical velocity for circular motion.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE