Answer
Verified
462.9k+ views
Hint: To build the relation between the three elastic constants, we can use the relations among two elastic constants with each other. To determine the answer in the form of given options, we can do some simple rearrangement and calculation with the relations of elastic constants.
Complete step by step solution:
Let $y$ is the modulus of elasticity, $n$ is the modulus of rigidity and $B$ is the bulk modulus.
The relation between $y$ and $n$ is,
$y = 2n\left( {1 + \mu } \right)$ (1)
Here $\mu $ is the Poisson’s ratio.
The relation between $y$ and $B$ is,
$y = 3B\left( {1 - 2\mu } \right)$ (2)
From equation (2), the expression of the Poisson’s ratio is,
$\begin{array}{l}
y = 3B\left( {1 - 2\mu } \right)\\
\dfrac{y}{{3B}} - 1 = - 2\mu \\
\mu = \dfrac{1}{2} - \dfrac{y}{{6B}}
\end{array}$ (3)
Now from equation (1) and (3), the relation between all three elastic constant is,
\[\begin{array}{l}
y = 2n\left( {1 + \left( {\dfrac{1}{2} - \dfrac{y}{{6B}}} \right)} \right)\\
y = 2n + n - \dfrac{{ny}}{{3B}}\\
y = \dfrac{{9nB - ny}}{{3B}}\\
3yB + nY = 9nB
\end{array}\]
On further solving the above equation
\[\begin{array}{l}
y = \dfrac{{9nB}}{{3B + n}}\\
\dfrac{9}{y} = \dfrac{3}{n} + \dfrac{1}{B}
\end{array}\]
Therefore, the option (B) is the correct answer that is $9/y = 3/n + 1/B$.
Note: The relation of elastic constants consist of the value of Poisson's ratio, so do not forget to remove the value of Poisson's ratio from the relations. To remove Poisson's ratio, replace the value of Poisson's ratio arrived from equation (2) in equation (1).
Complete step by step solution:
Let $y$ is the modulus of elasticity, $n$ is the modulus of rigidity and $B$ is the bulk modulus.
The relation between $y$ and $n$ is,
$y = 2n\left( {1 + \mu } \right)$ (1)
Here $\mu $ is the Poisson’s ratio.
The relation between $y$ and $B$ is,
$y = 3B\left( {1 - 2\mu } \right)$ (2)
From equation (2), the expression of the Poisson’s ratio is,
$\begin{array}{l}
y = 3B\left( {1 - 2\mu } \right)\\
\dfrac{y}{{3B}} - 1 = - 2\mu \\
\mu = \dfrac{1}{2} - \dfrac{y}{{6B}}
\end{array}$ (3)
Now from equation (1) and (3), the relation between all three elastic constant is,
\[\begin{array}{l}
y = 2n\left( {1 + \left( {\dfrac{1}{2} - \dfrac{y}{{6B}}} \right)} \right)\\
y = 2n + n - \dfrac{{ny}}{{3B}}\\
y = \dfrac{{9nB - ny}}{{3B}}\\
3yB + nY = 9nB
\end{array}\]
On further solving the above equation
\[\begin{array}{l}
y = \dfrac{{9nB}}{{3B + n}}\\
\dfrac{9}{y} = \dfrac{3}{n} + \dfrac{1}{B}
\end{array}\]
Therefore, the option (B) is the correct answer that is $9/y = 3/n + 1/B$.
Note: The relation of elastic constants consist of the value of Poisson's ratio, so do not forget to remove the value of Poisson's ratio from the relations. To remove Poisson's ratio, replace the value of Poisson's ratio arrived from equation (2) in equation (1).
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE