
The formula that relates all three elastic constants is.
A. $9/y = 3/n - 1/B$
B. $9/y = 3/n + 1/B$
C. $9/y = 3/n + 2/B$
D. $9/y = 3/n - 2/B$
Answer
585.3k+ views
Hint: To build the relation between the three elastic constants, we can use the relations among two elastic constants with each other. To determine the answer in the form of given options, we can do some simple rearrangement and calculation with the relations of elastic constants.
Complete step by step solution:
Let $y$ is the modulus of elasticity, $n$ is the modulus of rigidity and $B$ is the bulk modulus.
The relation between $y$ and $n$ is,
$y = 2n\left( {1 + \mu } \right)$ (1)
Here $\mu $ is the Poisson’s ratio.
The relation between $y$ and $B$ is,
$y = 3B\left( {1 - 2\mu } \right)$ (2)
From equation (2), the expression of the Poisson’s ratio is,
$\begin{array}{l}
y = 3B\left( {1 - 2\mu } \right)\\
\dfrac{y}{{3B}} - 1 = - 2\mu \\
\mu = \dfrac{1}{2} - \dfrac{y}{{6B}}
\end{array}$ (3)
Now from equation (1) and (3), the relation between all three elastic constant is,
\[\begin{array}{l}
y = 2n\left( {1 + \left( {\dfrac{1}{2} - \dfrac{y}{{6B}}} \right)} \right)\\
y = 2n + n - \dfrac{{ny}}{{3B}}\\
y = \dfrac{{9nB - ny}}{{3B}}\\
3yB + nY = 9nB
\end{array}\]
On further solving the above equation
\[\begin{array}{l}
y = \dfrac{{9nB}}{{3B + n}}\\
\dfrac{9}{y} = \dfrac{3}{n} + \dfrac{1}{B}
\end{array}\]
Therefore, the option (B) is the correct answer that is $9/y = 3/n + 1/B$.
Note: The relation of elastic constants consist of the value of Poisson's ratio, so do not forget to remove the value of Poisson's ratio from the relations. To remove Poisson's ratio, replace the value of Poisson's ratio arrived from equation (2) in equation (1).
Complete step by step solution:
Let $y$ is the modulus of elasticity, $n$ is the modulus of rigidity and $B$ is the bulk modulus.
The relation between $y$ and $n$ is,
$y = 2n\left( {1 + \mu } \right)$ (1)
Here $\mu $ is the Poisson’s ratio.
The relation between $y$ and $B$ is,
$y = 3B\left( {1 - 2\mu } \right)$ (2)
From equation (2), the expression of the Poisson’s ratio is,
$\begin{array}{l}
y = 3B\left( {1 - 2\mu } \right)\\
\dfrac{y}{{3B}} - 1 = - 2\mu \\
\mu = \dfrac{1}{2} - \dfrac{y}{{6B}}
\end{array}$ (3)
Now from equation (1) and (3), the relation between all three elastic constant is,
\[\begin{array}{l}
y = 2n\left( {1 + \left( {\dfrac{1}{2} - \dfrac{y}{{6B}}} \right)} \right)\\
y = 2n + n - \dfrac{{ny}}{{3B}}\\
y = \dfrac{{9nB - ny}}{{3B}}\\
3yB + nY = 9nB
\end{array}\]
On further solving the above equation
\[\begin{array}{l}
y = \dfrac{{9nB}}{{3B + n}}\\
\dfrac{9}{y} = \dfrac{3}{n} + \dfrac{1}{B}
\end{array}\]
Therefore, the option (B) is the correct answer that is $9/y = 3/n + 1/B$.
Note: The relation of elastic constants consist of the value of Poisson's ratio, so do not forget to remove the value of Poisson's ratio from the relations. To remove Poisson's ratio, replace the value of Poisson's ratio arrived from equation (2) in equation (1).
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

