Answer
Verified
452.4k+ views
Hint: To build the relation between the three elastic constants, we can use the relations among two elastic constants with each other. To determine the answer in the form of given options, we can do some simple rearrangement and calculation with the relations of elastic constants.
Complete step by step solution:
Let $y$ is the modulus of elasticity, $n$ is the modulus of rigidity and $B$ is the bulk modulus.
The relation between $y$ and $n$ is,
$y = 2n\left( {1 + \mu } \right)$ (1)
Here $\mu $ is the Poisson’s ratio.
The relation between $y$ and $B$ is,
$y = 3B\left( {1 - 2\mu } \right)$ (2)
From equation (2), the expression of the Poisson’s ratio is,
$\begin{array}{l}
y = 3B\left( {1 - 2\mu } \right)\\
\dfrac{y}{{3B}} - 1 = - 2\mu \\
\mu = \dfrac{1}{2} - \dfrac{y}{{6B}}
\end{array}$ (3)
Now from equation (1) and (3), the relation between all three elastic constant is,
\[\begin{array}{l}
y = 2n\left( {1 + \left( {\dfrac{1}{2} - \dfrac{y}{{6B}}} \right)} \right)\\
y = 2n + n - \dfrac{{ny}}{{3B}}\\
y = \dfrac{{9nB - ny}}{{3B}}\\
3yB + nY = 9nB
\end{array}\]
On further solving the above equation
\[\begin{array}{l}
y = \dfrac{{9nB}}{{3B + n}}\\
\dfrac{9}{y} = \dfrac{3}{n} + \dfrac{1}{B}
\end{array}\]
Therefore, the option (B) is the correct answer that is $9/y = 3/n + 1/B$.
Note: The relation of elastic constants consist of the value of Poisson's ratio, so do not forget to remove the value of Poisson's ratio from the relations. To remove Poisson's ratio, replace the value of Poisson's ratio arrived from equation (2) in equation (1).
Complete step by step solution:
Let $y$ is the modulus of elasticity, $n$ is the modulus of rigidity and $B$ is the bulk modulus.
The relation between $y$ and $n$ is,
$y = 2n\left( {1 + \mu } \right)$ (1)
Here $\mu $ is the Poisson’s ratio.
The relation between $y$ and $B$ is,
$y = 3B\left( {1 - 2\mu } \right)$ (2)
From equation (2), the expression of the Poisson’s ratio is,
$\begin{array}{l}
y = 3B\left( {1 - 2\mu } \right)\\
\dfrac{y}{{3B}} - 1 = - 2\mu \\
\mu = \dfrac{1}{2} - \dfrac{y}{{6B}}
\end{array}$ (3)
Now from equation (1) and (3), the relation between all three elastic constant is,
\[\begin{array}{l}
y = 2n\left( {1 + \left( {\dfrac{1}{2} - \dfrac{y}{{6B}}} \right)} \right)\\
y = 2n + n - \dfrac{{ny}}{{3B}}\\
y = \dfrac{{9nB - ny}}{{3B}}\\
3yB + nY = 9nB
\end{array}\]
On further solving the above equation
\[\begin{array}{l}
y = \dfrac{{9nB}}{{3B + n}}\\
\dfrac{9}{y} = \dfrac{3}{n} + \dfrac{1}{B}
\end{array}\]
Therefore, the option (B) is the correct answer that is $9/y = 3/n + 1/B$.
Note: The relation of elastic constants consist of the value of Poisson's ratio, so do not forget to remove the value of Poisson's ratio from the relations. To remove Poisson's ratio, replace the value of Poisson's ratio arrived from equation (2) in equation (1).
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE