Answer
Verified
498k+ views
Hint: If the value of limit of the function at a point \[x=a\] is equal to the value of the function at \[x=a\] , the function is said to be continuous at \[x=a\]. A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
Complete step-by-step answer:
At \[x=3\], \[f\left( x \right)=\left| x-3 \right|\].
We know \[\left| x-a \right|\] is a function that is continuous everywhere but it is not differentiable at vertex i.e. at \[x=a\].
So , \[f\left( x \right)\]is continuous at \[x=3\] but not differentiable at \[x=3\].
Now , we will check if the function is continuous or differentiable at critical points of the function .
A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
We know , the left hand derivative of \[f\left( x \right)\] at \[x=a\] is given as \[{{L}^{'}}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] and the right hand derivative of \[f\left( x \right)\]at \[x=a\] is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}\].
We will consider the critical point \[x=1\]. To determine differentiability of \[f\left( x \right)\] at \[x=1\], we will evaluate its left-hand derivative.
\[{{L}^{'}}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( 1-h \right)-f\left( 1 \right)}{-h}\]
\[=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \dfrac{\left( \dfrac{{{\left( 1-h \right)}^{2}}}{4}-\dfrac{3\left( 1-h \right)}{2}+\dfrac{13}{4} \right)-\left( \dfrac{{{1}^{2}}}{4}-\dfrac{3\left( 1 \right)}{2}+\dfrac{13}{4} \right)}{-h} \right]\]
\[=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \dfrac{\dfrac{{{h}^{2}}-2h+1}{4}-\dfrac{3-3h}{2}+\dfrac{13}{4}-\dfrac{1}{4}+\dfrac{3}{2}-\dfrac{13}{4}}{-h} \right]\]
\[=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \dfrac{{{h}^{2}}+4h}{-4h} \right]\]
\[=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \dfrac{h+4}{-4} \right]\]
\[=-1\]
Now , we will evaluate the right-hand derivative of \[f\left( x \right)\] at \[x=1\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left| 1+h-3 \right|-\left| 1-3 \right|}{h}\]
Now, we know\[1+h<3\],
So \[\left| 1+h-3 \right|=\left| h-2 \right|=2-h\]
So, \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2-h-2}{h}\]
\[=-1\]
Clearly, the left hand derivative is equal to the right hand derivative.
Hence \[f\left( x \right)\] is differentiable at \[x=1\].
Now, we also know that if a function is differentiable at a point then it must be continuous at that point.
So, \[f\left( x \right)\] is continuous at \[x=1\].
Hence , the function is differentiable and continuous at \[x=1\] and the function is continuous but not differentiable at \[x=3\].
Answer is (a) , (b) , (c)
Note: A function which is differentiable at a point is necessarily continuous at that point. But a function which is continuous at a point, may or may not be differentiable at that point.
Complete step-by-step answer:
At \[x=3\], \[f\left( x \right)=\left| x-3 \right|\].
We know \[\left| x-a \right|\] is a function that is continuous everywhere but it is not differentiable at vertex i.e. at \[x=a\].
So , \[f\left( x \right)\]is continuous at \[x=3\] but not differentiable at \[x=3\].
Now , we will check if the function is continuous or differentiable at critical points of the function .
A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
We know , the left hand derivative of \[f\left( x \right)\] at \[x=a\] is given as \[{{L}^{'}}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] and the right hand derivative of \[f\left( x \right)\]at \[x=a\] is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}\].
We will consider the critical point \[x=1\]. To determine differentiability of \[f\left( x \right)\] at \[x=1\], we will evaluate its left-hand derivative.
\[{{L}^{'}}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( 1-h \right)-f\left( 1 \right)}{-h}\]
\[=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \dfrac{\left( \dfrac{{{\left( 1-h \right)}^{2}}}{4}-\dfrac{3\left( 1-h \right)}{2}+\dfrac{13}{4} \right)-\left( \dfrac{{{1}^{2}}}{4}-\dfrac{3\left( 1 \right)}{2}+\dfrac{13}{4} \right)}{-h} \right]\]
\[=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \dfrac{\dfrac{{{h}^{2}}-2h+1}{4}-\dfrac{3-3h}{2}+\dfrac{13}{4}-\dfrac{1}{4}+\dfrac{3}{2}-\dfrac{13}{4}}{-h} \right]\]
\[=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \dfrac{{{h}^{2}}+4h}{-4h} \right]\]
\[=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \dfrac{h+4}{-4} \right]\]
\[=-1\]
Now , we will evaluate the right-hand derivative of \[f\left( x \right)\] at \[x=1\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left| 1+h-3 \right|-\left| 1-3 \right|}{h}\]
Now, we know\[1+h<3\],
So \[\left| 1+h-3 \right|=\left| h-2 \right|=2-h\]
So, \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{2-h-2}{h}\]
\[=-1\]
Clearly, the left hand derivative is equal to the right hand derivative.
Hence \[f\left( x \right)\] is differentiable at \[x=1\].
Now, we also know that if a function is differentiable at a point then it must be continuous at that point.
So, \[f\left( x \right)\] is continuous at \[x=1\].
Hence , the function is differentiable and continuous at \[x=1\] and the function is continuous but not differentiable at \[x=3\].
Answer is (a) , (b) , (c)
Note: A function which is differentiable at a point is necessarily continuous at that point. But a function which is continuous at a point, may or may not be differentiable at that point.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE