Answer
Verified
393.3k+ views
Hint: We need to find whether the function $f\left( x \right)=x{{\tan }^{-1}}\dfrac{1}{x}$ is differentiable and continuous at x = 0. We solve the given question by finding out the range of the given function and apply limits to get the desired result.
Complete step-by-step solution:
We are given a function $f\left( x \right)=x{{\tan }^{-1}}\dfrac{1}{x}$ and are asked to find if the function is differentiable and continuous at x = 0. We will be solving the given question using the concept of limits and
differentiation.
We will have to find the range of the given function $f\left( x \right)=x{{\tan }^{-1}}\dfrac{1}{x}$ .
From the formulae of trigonometry, we know that the range of the function ${{\tan }^{-1}}\dfrac{1}{x}$ is $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$
Writing the same in the form of inequality, we get,
$\Rightarrow -\dfrac{\pi }{2} < {{\tan }^{-1}}\dfrac{1}{x} < \dfrac{\pi }{2}$
Multiplying the inequality with x, we get,
$\Rightarrow -\dfrac{\pi }{2}x < x{{\tan }^{-1}}\dfrac{1}{x} < x\dfrac{\pi }{2}$
A function $f\left( x \right)$ is continuous if, for every value of c in the domain, the function $f\left( c \right)$ is defined and
$\Rightarrow \displaystyle \lim_{x \to c}f\left( x \right)=f\left( c \right)$
We need to find the limit of the function $f\left( x \right)=x{{\tan }^{-1}}\dfrac{1}{x}$ .
Following the same, we get,
$\Rightarrow \displaystyle \lim_{x \to 0}f\left( x \right)=\displaystyle \lim_{x \to 0}x{{\tan }^{-1}}\dfrac{1}{x}$
Applying the limits to the above equation, we get,
$\Rightarrow \displaystyle \lim_{x \to 0}f\left( x \right)=\displaystyle \lim_{x \to 0}x{{\tan }^{-1}}\dfrac{1}{x}=0$
From the above,
$\therefore \displaystyle \lim_{x \to 0}x{{\tan }^{-1}}\dfrac{1}{x}=0$
And from the question we know that $f\left( 0 \right)=0$
$\therefore f\left( x \right)$ is continuous at x = 0.
We can test if the function is differentiable at any point c using the limit given as follows,
$\Rightarrow \displaystyle \lim_{h\to 0}\dfrac{f\left( c+h \right)-f\left( c \right)}{h}$
If the limit exists, the function is differentiable.
As per the given question, we get,
$\Rightarrow \displaystyle \lim_{x \to 0}\dfrac{f\left( x \right)-f\left( 0 \right)}{x-0}$
Substituting the values in the above expression, we get,
$\Rightarrow \displaystyle \lim_{x \to 0}\dfrac{x{{\tan }^{-1}}\dfrac{1}{x}-0}{x}$
Simplifying the above equation, we get,
$\Rightarrow \displaystyle \lim_{x \to 0}{{\tan }^{-1}}\dfrac{1}{x}$
We know that the value of the limit ${{\tan }^{-1}}\dfrac{1}{x}$ does not exist at $x=0$ . So, the function is not differentiable at x = 0.
$\therefore$ Option D holds the correct answer for the given question.
Note: We must know the basic formulae of derivatives and limits to solve the given question easily.
The continuity of the function given in the question can also be determined by plotting the graph of
the function. If the graph of the function has no holes or breaks in it the function is continuous.
Complete step-by-step solution:
We are given a function $f\left( x \right)=x{{\tan }^{-1}}\dfrac{1}{x}$ and are asked to find if the function is differentiable and continuous at x = 0. We will be solving the given question using the concept of limits and
differentiation.
We will have to find the range of the given function $f\left( x \right)=x{{\tan }^{-1}}\dfrac{1}{x}$ .
From the formulae of trigonometry, we know that the range of the function ${{\tan }^{-1}}\dfrac{1}{x}$ is $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$
Writing the same in the form of inequality, we get,
$\Rightarrow -\dfrac{\pi }{2} < {{\tan }^{-1}}\dfrac{1}{x} < \dfrac{\pi }{2}$
Multiplying the inequality with x, we get,
$\Rightarrow -\dfrac{\pi }{2}x < x{{\tan }^{-1}}\dfrac{1}{x} < x\dfrac{\pi }{2}$
A function $f\left( x \right)$ is continuous if, for every value of c in the domain, the function $f\left( c \right)$ is defined and
$\Rightarrow \displaystyle \lim_{x \to c}f\left( x \right)=f\left( c \right)$
We need to find the limit of the function $f\left( x \right)=x{{\tan }^{-1}}\dfrac{1}{x}$ .
Following the same, we get,
$\Rightarrow \displaystyle \lim_{x \to 0}f\left( x \right)=\displaystyle \lim_{x \to 0}x{{\tan }^{-1}}\dfrac{1}{x}$
Applying the limits to the above equation, we get,
$\Rightarrow \displaystyle \lim_{x \to 0}f\left( x \right)=\displaystyle \lim_{x \to 0}x{{\tan }^{-1}}\dfrac{1}{x}=0$
From the above,
$\therefore \displaystyle \lim_{x \to 0}x{{\tan }^{-1}}\dfrac{1}{x}=0$
And from the question we know that $f\left( 0 \right)=0$
$\therefore f\left( x \right)$ is continuous at x = 0.
We can test if the function is differentiable at any point c using the limit given as follows,
$\Rightarrow \displaystyle \lim_{h\to 0}\dfrac{f\left( c+h \right)-f\left( c \right)}{h}$
If the limit exists, the function is differentiable.
As per the given question, we get,
$\Rightarrow \displaystyle \lim_{x \to 0}\dfrac{f\left( x \right)-f\left( 0 \right)}{x-0}$
Substituting the values in the above expression, we get,
$\Rightarrow \displaystyle \lim_{x \to 0}\dfrac{x{{\tan }^{-1}}\dfrac{1}{x}-0}{x}$
Simplifying the above equation, we get,
$\Rightarrow \displaystyle \lim_{x \to 0}{{\tan }^{-1}}\dfrac{1}{x}$
We know that the value of the limit ${{\tan }^{-1}}\dfrac{1}{x}$ does not exist at $x=0$ . So, the function is not differentiable at x = 0.
$\therefore$ Option D holds the correct answer for the given question.
Note: We must know the basic formulae of derivatives and limits to solve the given question easily.
The continuity of the function given in the question can also be determined by plotting the graph of
the function. If the graph of the function has no holes or breaks in it the function is continuous.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE