The function $y = f\left( x \right)$ is the solution of the differential equation $\dfrac{{dy}}{{dx}} + \dfrac{{xy}}{{{x^2} - 1}} = \dfrac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }}$ in (-1, 1) satisfying $f\left( 0 \right) = 0$ then $\int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {f\left( x \right)dx} $ is
A. $\dfrac{\pi }{3} - \dfrac{{\sqrt 3 }}{2}$
B. $\dfrac{\pi }{3} - \dfrac{{\sqrt 3 }}{4}$
C. $\dfrac{\pi }{6} + \dfrac{{\sqrt 3 }}{4}$
D. $\dfrac{\pi }{6} - \dfrac{{\sqrt 3 }}{4}$
Answer
Verified
466.5k+ views
Hint: To solve this question, we will use the concept of linear differential equation. We have to follow the following steps to solve a linear differential equation.
Step 1: write the differential equation in the form $\dfrac{{dy}}{{dx}} + Py = Q$ and obtain P and Q.
Step 2: find integration factor (I.F.) given by $I.F. = {e^{\int {Pdx} }}$
Step 3: multiply both sides of the equation in step 1 by I.F.
Step 4: integrate both sides of the equation obtained in step 3 with respect to x to obtain $y\left( {I.F.} \right) = \int {Q\left( {I.F.} \right)dx + C} $, which gives the required solution.
Complete step-by-step answer:
Given that,
Differential equation is:
$\dfrac{{dy}}{{dx}} + \dfrac{{xy}}{{{x^2} - 1}} = \dfrac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }}$ …….. (i)
Comparing this with the general form of differential equation, i.e. $\dfrac{{dy}}{{dx}} + Py = Q$
We get,
$ \Rightarrow P = \dfrac{x}{{{x^2} - 1}}$ and $Q = \dfrac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }}$
We know that,
Integration factor (I.F.) is given by,
$I.F. = {e^{\int {Pdx} }}$
Putting the value of P, we will get
$ \Rightarrow I.F. = {e^{\int {\dfrac{x}{{{x^2} - 1}}dx} }}$ ……… (ii)
First, we will find $\int {\dfrac{x}{{{x^2} - 1}}} dx$
So, let $t = {x^2} - 1$
Differentiate both sides,
$dt = 2xdx$
$\dfrac{{dt}}{2} = xdx$
Using this, we can write the above integration as:
$ \Rightarrow \int {\dfrac{1}{t}} \dfrac{{dt}}{2}$
Integrating this, we will get
$ \Rightarrow \dfrac{1}{2}\ln \left| t \right| + C$
Replace $t = {x^2} - 1$,
$ \Rightarrow \dfrac{1}{2}\ln \left| {{x^2} - 1} \right| + C$
Putting this value in equation (ii), we will get
$ \Rightarrow I.F. = {e^{\dfrac{1}{2}\ln \left| {{x^2} - 1} \right| + C}}$
According to the question,
The differential equation satisfies (-1, 1)
So, we can say that,
$\left| {{x^2} - 1} \right| = 1 - {x^2}$
Hence,
$ \Rightarrow I.F. = {e^{\ln \left( {\sqrt {1 - {x^2}} } \right) + C}}$
Solving this, we will get
$ \Rightarrow I.F. = \sqrt {1 - {x^2}} $ [$\therefore {e^{\ln x}} = x$]
Now,
The required solution will be,
$y\left( {I.F.} \right) = \int {Q\left( {I.F.} \right)dx + C} $
Putting the required values, we will get
\[ \Rightarrow y\sqrt {1 - {x^2}} = \int {\dfrac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }}\sqrt {1 - {x^2}} dx + C} \]
\[ \Rightarrow y\sqrt {1 - {x^2}} = \int {\left( {{x^4} + 2x} \right)dx + C} \]
Solving this, we will get
\[ \Rightarrow y\sqrt {1 - {x^2}} = \dfrac{{{x^5}}}{5} + {x^2} + C\]
we know that,
$y = f\left( x \right)$
So,
\[ \Rightarrow f\left( x \right)\sqrt {1 - {x^2}} = \dfrac{{{x^5}}}{5} + {x^2} + C\] ……. (iii)
Putting x = 0, we will get
\[ \Rightarrow f\left( 0 \right)\sqrt {1 - {0^2}} = \dfrac{{{0^5}}}{5} + {0^2} + C\]
We have given $f\left( 0 \right) = 0$
Hence, we get
$ \Rightarrow C = 0$
Therefore, equation (iii) will become,
\[ \Rightarrow f\left( x \right)\sqrt {1 - {x^2}} = \dfrac{{{x^5}}}{5} + {x^2}\]
\[ \Rightarrow f\left( x \right) = \dfrac{{\left( {\dfrac{{{x^5}}}{5} + {x^2}} \right)}}{{\sqrt {1 - {x^2}} }}\]
According to the question, we have to find $\int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {f\left( x \right)dx} $
Putting the value of f(x),
\[ \Rightarrow \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {f\left( x \right)dx} = \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\dfrac{{\left( {\dfrac{{{x^5}}}{5} + {x^2}} \right)}}{{\sqrt {1 - {x^2}} }}dx} \]
We can write this as,
\[ \Rightarrow \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^5}}}{{5\sqrt {1 - {x^2}} }}} \right)dx} + \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^2}}}{{\sqrt {1 - {x^2}} }}} \right)dx} \] ………. (iv)
Using the identity, we know that
$\int\limits_{ - a}^a {f\left( x \right)dx} = 0$, if f is an odd function and,
$\int\limits_{ - a}^a {f\left( x \right)dx} = 2\int\limits_0^a {f\left( x \right)dx} $, if f is an even function.
Here we can see that,
\[\dfrac{{{x^5}}}{{5\sqrt {1 - {x^2}} }}\] is an odd function.
So,
\[ \Rightarrow \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^5}}}{{5\sqrt {1 - {x^2}} }}} \right)dx} = 0\]
Then, equation (iv) will become,
\[ \Rightarrow 2\int\limits_0^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^2}}}{{\sqrt {1 - {x^2}} }}} \right)dx} \]
Put $x = \sin \theta $
Differentiate both sides,
$dx = \cos \theta d\theta $
When $x = 0$, $\theta = {\sin ^{ - 1}}0 = 0$
And when $x = \dfrac{{\sqrt 3 }}{2}$, $\theta = {\sin ^{ - 1}}\dfrac{{\sqrt 3 }}{2} = \dfrac{\pi }{3}$
Using this, we will get
\[ \Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {\left( {\dfrac{{{{\sin }^2}\theta }}{{\sqrt {1 - {{\sin }^2}\theta } }}} \right)\cos \theta d\theta } \]
\[ \Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {\left( {\dfrac{{{{\sin }^2}\theta }}{{\cos \theta }}} \right)\cos \theta d\theta } \] [$\therefore \sqrt {1 - {{\sin }^2}\theta } = \cos \theta $]
\[ \Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {{{\sin }^2}\theta d\theta } \] ….. (v)
We know that,
$ \Rightarrow \cos 2x = 1 - 2{\sin ^2}x$
So,
$ \Rightarrow {\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}$
Hence equation (v) will become,
\[ \Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {\dfrac{{1 - \cos 2x}}{2}d\theta } \]
Integrating this, we will get
\[ \Rightarrow 2\left[ {\dfrac{\theta }{2} - \dfrac{{\sin 2\theta }}{4}} \right]_0^{\dfrac{\pi }{3}}\]
\[ \Rightarrow 2\left[ {\left( {\dfrac{\pi }{6} - \dfrac{{\sin \dfrac{{2\pi }}{3}}}{4}} \right) - \left( {\dfrac{0}{2} - \dfrac{{\sin 20}}{4}} \right)} \right]\]
\[ \Rightarrow 2\left[ {\dfrac{\pi }{6} - \dfrac{{\sqrt 3 }}{8} - 0} \right]\]
\[ \Rightarrow \dfrac{\pi }{3} - \dfrac{{\sqrt 3 }}{4}\]
Hence, we can say that the value of $\int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {f\left( x \right)dx} $ is \[\dfrac{\pi }{3} - \dfrac{{\sqrt 3 }}{4}\]
So, the correct answer is “Option B”.
Note: when the differential equation is in the form $\dfrac{{dx}}{{dy}} + Rx = S$, then
Step 1: write the differential equation in the form $\dfrac{{dx}}{{dy}} + Rx = S$ and obtain R and S.
Step 2: find integration factor (I.F.) given by $I.F. = {e^{\int {Rdy} }}$
Step 3: multiply both sides of the equation in step 1 by I.F.
Step 4: integrate both sides of the equation obtained in step 3 with respect to y to obtain $x\left( {I.F.} \right) = \int {S\left( {I.F.} \right)dy + C} $, which gives the required solution.
Step 1: write the differential equation in the form $\dfrac{{dy}}{{dx}} + Py = Q$ and obtain P and Q.
Step 2: find integration factor (I.F.) given by $I.F. = {e^{\int {Pdx} }}$
Step 3: multiply both sides of the equation in step 1 by I.F.
Step 4: integrate both sides of the equation obtained in step 3 with respect to x to obtain $y\left( {I.F.} \right) = \int {Q\left( {I.F.} \right)dx + C} $, which gives the required solution.
Complete step-by-step answer:
Given that,
Differential equation is:
$\dfrac{{dy}}{{dx}} + \dfrac{{xy}}{{{x^2} - 1}} = \dfrac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }}$ …….. (i)
Comparing this with the general form of differential equation, i.e. $\dfrac{{dy}}{{dx}} + Py = Q$
We get,
$ \Rightarrow P = \dfrac{x}{{{x^2} - 1}}$ and $Q = \dfrac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }}$
We know that,
Integration factor (I.F.) is given by,
$I.F. = {e^{\int {Pdx} }}$
Putting the value of P, we will get
$ \Rightarrow I.F. = {e^{\int {\dfrac{x}{{{x^2} - 1}}dx} }}$ ……… (ii)
First, we will find $\int {\dfrac{x}{{{x^2} - 1}}} dx$
So, let $t = {x^2} - 1$
Differentiate both sides,
$dt = 2xdx$
$\dfrac{{dt}}{2} = xdx$
Using this, we can write the above integration as:
$ \Rightarrow \int {\dfrac{1}{t}} \dfrac{{dt}}{2}$
Integrating this, we will get
$ \Rightarrow \dfrac{1}{2}\ln \left| t \right| + C$
Replace $t = {x^2} - 1$,
$ \Rightarrow \dfrac{1}{2}\ln \left| {{x^2} - 1} \right| + C$
Putting this value in equation (ii), we will get
$ \Rightarrow I.F. = {e^{\dfrac{1}{2}\ln \left| {{x^2} - 1} \right| + C}}$
According to the question,
The differential equation satisfies (-1, 1)
So, we can say that,
$\left| {{x^2} - 1} \right| = 1 - {x^2}$
Hence,
$ \Rightarrow I.F. = {e^{\ln \left( {\sqrt {1 - {x^2}} } \right) + C}}$
Solving this, we will get
$ \Rightarrow I.F. = \sqrt {1 - {x^2}} $ [$\therefore {e^{\ln x}} = x$]
Now,
The required solution will be,
$y\left( {I.F.} \right) = \int {Q\left( {I.F.} \right)dx + C} $
Putting the required values, we will get
\[ \Rightarrow y\sqrt {1 - {x^2}} = \int {\dfrac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }}\sqrt {1 - {x^2}} dx + C} \]
\[ \Rightarrow y\sqrt {1 - {x^2}} = \int {\left( {{x^4} + 2x} \right)dx + C} \]
Solving this, we will get
\[ \Rightarrow y\sqrt {1 - {x^2}} = \dfrac{{{x^5}}}{5} + {x^2} + C\]
we know that,
$y = f\left( x \right)$
So,
\[ \Rightarrow f\left( x \right)\sqrt {1 - {x^2}} = \dfrac{{{x^5}}}{5} + {x^2} + C\] ……. (iii)
Putting x = 0, we will get
\[ \Rightarrow f\left( 0 \right)\sqrt {1 - {0^2}} = \dfrac{{{0^5}}}{5} + {0^2} + C\]
We have given $f\left( 0 \right) = 0$
Hence, we get
$ \Rightarrow C = 0$
Therefore, equation (iii) will become,
\[ \Rightarrow f\left( x \right)\sqrt {1 - {x^2}} = \dfrac{{{x^5}}}{5} + {x^2}\]
\[ \Rightarrow f\left( x \right) = \dfrac{{\left( {\dfrac{{{x^5}}}{5} + {x^2}} \right)}}{{\sqrt {1 - {x^2}} }}\]
According to the question, we have to find $\int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {f\left( x \right)dx} $
Putting the value of f(x),
\[ \Rightarrow \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {f\left( x \right)dx} = \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\dfrac{{\left( {\dfrac{{{x^5}}}{5} + {x^2}} \right)}}{{\sqrt {1 - {x^2}} }}dx} \]
We can write this as,
\[ \Rightarrow \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^5}}}{{5\sqrt {1 - {x^2}} }}} \right)dx} + \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^2}}}{{\sqrt {1 - {x^2}} }}} \right)dx} \] ………. (iv)
Using the identity, we know that
$\int\limits_{ - a}^a {f\left( x \right)dx} = 0$, if f is an odd function and,
$\int\limits_{ - a}^a {f\left( x \right)dx} = 2\int\limits_0^a {f\left( x \right)dx} $, if f is an even function.
Here we can see that,
\[\dfrac{{{x^5}}}{{5\sqrt {1 - {x^2}} }}\] is an odd function.
So,
\[ \Rightarrow \int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^5}}}{{5\sqrt {1 - {x^2}} }}} \right)dx} = 0\]
Then, equation (iv) will become,
\[ \Rightarrow 2\int\limits_0^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{{{x^2}}}{{\sqrt {1 - {x^2}} }}} \right)dx} \]
Put $x = \sin \theta $
Differentiate both sides,
$dx = \cos \theta d\theta $
When $x = 0$, $\theta = {\sin ^{ - 1}}0 = 0$
And when $x = \dfrac{{\sqrt 3 }}{2}$, $\theta = {\sin ^{ - 1}}\dfrac{{\sqrt 3 }}{2} = \dfrac{\pi }{3}$
Using this, we will get
\[ \Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {\left( {\dfrac{{{{\sin }^2}\theta }}{{\sqrt {1 - {{\sin }^2}\theta } }}} \right)\cos \theta d\theta } \]
\[ \Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {\left( {\dfrac{{{{\sin }^2}\theta }}{{\cos \theta }}} \right)\cos \theta d\theta } \] [$\therefore \sqrt {1 - {{\sin }^2}\theta } = \cos \theta $]
\[ \Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {{{\sin }^2}\theta d\theta } \] ….. (v)
We know that,
$ \Rightarrow \cos 2x = 1 - 2{\sin ^2}x$
So,
$ \Rightarrow {\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}$
Hence equation (v) will become,
\[ \Rightarrow 2\int\limits_0^{\dfrac{\pi }{3}} {\dfrac{{1 - \cos 2x}}{2}d\theta } \]
Integrating this, we will get
\[ \Rightarrow 2\left[ {\dfrac{\theta }{2} - \dfrac{{\sin 2\theta }}{4}} \right]_0^{\dfrac{\pi }{3}}\]
\[ \Rightarrow 2\left[ {\left( {\dfrac{\pi }{6} - \dfrac{{\sin \dfrac{{2\pi }}{3}}}{4}} \right) - \left( {\dfrac{0}{2} - \dfrac{{\sin 20}}{4}} \right)} \right]\]
\[ \Rightarrow 2\left[ {\dfrac{\pi }{6} - \dfrac{{\sqrt 3 }}{8} - 0} \right]\]
\[ \Rightarrow \dfrac{\pi }{3} - \dfrac{{\sqrt 3 }}{4}\]
Hence, we can say that the value of $\int\limits_{ - \dfrac{{\sqrt 3 }}{2}}^{\dfrac{{\sqrt 3 }}{2}} {f\left( x \right)dx} $ is \[\dfrac{\pi }{3} - \dfrac{{\sqrt 3 }}{4}\]
So, the correct answer is “Option B”.
Note: when the differential equation is in the form $\dfrac{{dx}}{{dy}} + Rx = S$, then
Step 1: write the differential equation in the form $\dfrac{{dx}}{{dy}} + Rx = S$ and obtain R and S.
Step 2: find integration factor (I.F.) given by $I.F. = {e^{\int {Rdy} }}$
Step 3: multiply both sides of the equation in step 1 by I.F.
Step 4: integrate both sides of the equation obtained in step 3 with respect to y to obtain $x\left( {I.F.} \right) = \int {S\left( {I.F.} \right)dy + C} $, which gives the required solution.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Why is the cell called the structural and functional class 12 biology CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE