Answer
Verified
469.2k+ views
Hint: In this particular problem apply the formula that if a and b are the two numbers or polynomial equation then the relation between the GCD and LCM of the two numbers/equations is \[GCD\left( {a,b} \right) \times LCM\left( {a,b} \right) = a \times b\].
Complete step by step answer:
As we know that LCM of two equations is the least common multiple of both the equations.
And the GCD of the equation is the greatest common divisor of both the equations.
So, let the given equations be f(x) and g(x).
So, f(x) = \[{x^4} + 3{x^3} + 5{x^2} + 26x + 56\] (1)
And, g(x) = \[{x^4} + 2{x^3} - 4{x^2} - x + 28\] (2)
So, now as we know the formula that if there are two polynomial equations then the product of their GCD and LCM is equal to the product of two equations.
So, now we are given that the GCD of f(x) and g(x) is \[{x^2} + 5x + 7\].
Let, h(x) = \[{x^2} + 5x + 7\] (3)
So, Let the LCM of the equation f(x) and g(x) be l(x)
So, according to the above stated formula \[h\left( x \right) \times l\left( x \right) = f\left( x \right) \times g\left( x \right)\]
Dividing both the sides of the above equation by h(x).
LCM = \[l\left( x \right) = \dfrac{{f\left( x \right) \times g\left( x \right)}}{{h\left( x \right)}} = \dfrac{{\left( {{x^4} + 3{x^3} + 5{x^2} + 26x + 56} \right) \times \left( {{x^4} + 2{x^3} - 4{x^2} - x + 28} \right)}}{{\left( {{x^2} + 5x + 7} \right)}}\] (1)
Now let us divide f(x) by h(x) to simplify the above equation
\[{x^2} + 5x + 7\mathop{\left){\vphantom{1\begin{gathered}
{x^4} + 3{x^3} + 5{x^2} + 26x + 56 \\
{x^4} + 5{x^3} + 7{x^2} \\
{\text{ }} - 2{x^3} - 2{x^2} + 26x + 56 \\
{\text{ }} - 2{x^3} - 10{x^2} - 14x \\
{\text{ }}8{x^2} + 40x + 56 \\
{\text{ }}8{x^2} + 40x + 56{\text{ }} \\
{\text{ 0 }} \\
\end{gathered} }}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{\begin{gathered}
{x^4} + 3{x^3} + 5{x^2} + 26x + 56 \\
{x^4} + 5{x^3} + 7{x^2} \\
{\text{ }} - 2{x^3} - 2{x^2} + 26x + 56 \\
{\text{ }} - 2{x^3} - 10{x^2} - 14x \\
{\text{ }}8{x^2} + 40x + 56 \\
{\text{ }}8{x^2} + 40x + 56{\text{ }} \\
{\text{ 0 }} \\
\end{gathered} }}}
\limits^{\displaystyle \,\,\, {{x^2} - 2x + 8}}\]
So, the quotient when f(x) is divided by h(x) will be \[{x^2} - 2x + 8\].
So, equation 1 becomes,
\[ \Rightarrow l\left( x \right) = \left( {{x^2} - 2x + 8} \right) \times \left( {{x^4} + 2{x^3} - 4{x^2} - x + 28} \right)\].
Hence the LCM of the \[{x^4} + 3{x^3} + 5{x^2} + 26x + 56\] and \[{x^4} + 2{x^3} - 4{x^2} - x + 28\] is \[\left( {{x^2} - 2x + 8} \right) \times \left( {{x^4} + 2{x^3} - 4{x^2} - x + 28} \right)\].
Note:
Whenever we face such types of problems then first, we have to recall the definition of GCD and LCM of numbers (this will be the same for equations also). And after that we can apply the direct formula \[GCD\left( {a,b} \right) \times LCM\left( {a,b} \right) = a \times b\] to find the GCD or LCM if one of them is already given. So, to find the LCM we had to divide the product of the numbers by their GCD and for that we can use the long division method. This will be the easiest and efficient way to find the solution of the problem.
Complete step by step answer:
As we know that LCM of two equations is the least common multiple of both the equations.
And the GCD of the equation is the greatest common divisor of both the equations.
So, let the given equations be f(x) and g(x).
So, f(x) = \[{x^4} + 3{x^3} + 5{x^2} + 26x + 56\] (1)
And, g(x) = \[{x^4} + 2{x^3} - 4{x^2} - x + 28\] (2)
So, now as we know the formula that if there are two polynomial equations then the product of their GCD and LCM is equal to the product of two equations.
So, now we are given that the GCD of f(x) and g(x) is \[{x^2} + 5x + 7\].
Let, h(x) = \[{x^2} + 5x + 7\] (3)
So, Let the LCM of the equation f(x) and g(x) be l(x)
So, according to the above stated formula \[h\left( x \right) \times l\left( x \right) = f\left( x \right) \times g\left( x \right)\]
Dividing both the sides of the above equation by h(x).
LCM = \[l\left( x \right) = \dfrac{{f\left( x \right) \times g\left( x \right)}}{{h\left( x \right)}} = \dfrac{{\left( {{x^4} + 3{x^3} + 5{x^2} + 26x + 56} \right) \times \left( {{x^4} + 2{x^3} - 4{x^2} - x + 28} \right)}}{{\left( {{x^2} + 5x + 7} \right)}}\] (1)
Now let us divide f(x) by h(x) to simplify the above equation
\[{x^2} + 5x + 7\mathop{\left){\vphantom{1\begin{gathered}
{x^4} + 3{x^3} + 5{x^2} + 26x + 56 \\
{x^4} + 5{x^3} + 7{x^2} \\
{\text{ }} - 2{x^3} - 2{x^2} + 26x + 56 \\
{\text{ }} - 2{x^3} - 10{x^2} - 14x \\
{\text{ }}8{x^2} + 40x + 56 \\
{\text{ }}8{x^2} + 40x + 56{\text{ }} \\
{\text{ 0 }} \\
\end{gathered} }}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{\begin{gathered}
{x^4} + 3{x^3} + 5{x^2} + 26x + 56 \\
{x^4} + 5{x^3} + 7{x^2} \\
{\text{ }} - 2{x^3} - 2{x^2} + 26x + 56 \\
{\text{ }} - 2{x^3} - 10{x^2} - 14x \\
{\text{ }}8{x^2} + 40x + 56 \\
{\text{ }}8{x^2} + 40x + 56{\text{ }} \\
{\text{ 0 }} \\
\end{gathered} }}}
\limits^{\displaystyle \,\,\, {{x^2} - 2x + 8}}\]
So, the quotient when f(x) is divided by h(x) will be \[{x^2} - 2x + 8\].
So, equation 1 becomes,
\[ \Rightarrow l\left( x \right) = \left( {{x^2} - 2x + 8} \right) \times \left( {{x^4} + 2{x^3} - 4{x^2} - x + 28} \right)\].
Hence the LCM of the \[{x^4} + 3{x^3} + 5{x^2} + 26x + 56\] and \[{x^4} + 2{x^3} - 4{x^2} - x + 28\] is \[\left( {{x^2} - 2x + 8} \right) \times \left( {{x^4} + 2{x^3} - 4{x^2} - x + 28} \right)\].
Note:
Whenever we face such types of problems then first, we have to recall the definition of GCD and LCM of numbers (this will be the same for equations also). And after that we can apply the direct formula \[GCD\left( {a,b} \right) \times LCM\left( {a,b} \right) = a \times b\] to find the GCD or LCM if one of them is already given. So, to find the LCM we had to divide the product of the numbers by their GCD and for that we can use the long division method. This will be the easiest and efficient way to find the solution of the problem.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers