Answer
Verified
501.6k+ views
Hint: Firstly, consider an expression of the form \[r\sin \left( x+a \right)=1\]. Expand this expression using the formula, \[\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B\] and compare with the given trigonometric function in the question. Upon using the required trigonometric identity of sine function and the general solution, we can compute the answer.
Given, \[\sin x+\cos x=1\], which is a trigonometric equation.
This is a problem based on finding out the general solution of a trigonometric equation.
To initiate the process, let us assume a trigonometric equation:
\[r\sin \left( x+a \right)=1\].
\[r\sin \cos a+r\cos x\sin a=1\].
We have written the above equation using the trigonometry compound angle formula which is given below:
\[\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B.\]
Now let us compare both the equations:
\[r\sin \cos a+r\cos x\sin a=1\]with \[\sin x+\cos x=1\].
Through that we have:
\[\begin{align}
& r\cos a=1 \\
& \Rightarrow \cos a=\dfrac{1}{r}.........(i) \\
& r\sin a=1 \\
& \Rightarrow \sin a=\dfrac{1}{r}.........(ii) \\
\end{align}\]
Dividing the above-mentioned equations, we get:
\[\dfrac{\sin a}{\cos a}=\dfrac{\dfrac{1}{r}}{\dfrac{1}{r}}\]
\[\Rightarrow tana=1\]
But we know, $\tan \dfrac{\pi }{4}=1$
So, the value of a is \[\dfrac{\pi }{4}\].
As we know that \[{{\cos }^{2}}a+{{\sin }^{2}}a=1\], substituting values from equation (i) and (ii), we can rewrite this equation as:
\[\dfrac{1}{{{r}^{2}}}+\dfrac{1}{{{r}^{2}}}=1\].
\[\Rightarrow \dfrac{2}{{{r}^{2}}}=1\]
\[{{r}^{2}}=2\]
Taking the square root on both sides, we get
\[r=\sqrt{2}\].
Substituting the value of ‘r’ and ‘a’ in the assumed equation\[r\sin \left( x+a \right)=1\], we have:
\[\sqrt{2}\sin \left( x+\dfrac{\pi }{4} \right)=1\]
\[\sin \left( x+\dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\]
But we know, $\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$ , substituting this value the above equation can be written as,
\[\sin \left( x+\dfrac{\pi }{4} \right)=\sin \dfrac{\pi }{4}\]
The general solution of this equation is
\[\Rightarrow x+\dfrac{\pi }{4}=n\pi +{{\left( -1 \right)}^{n}}\dfrac{\pi }{4}\], for \[n=0,\pm 1,\pm 2,\pm 3..........\]
Therefore \[x=n\pi +{{\left( -1 \right)}^{n}}\dfrac{\pi }{4}-\dfrac{\pi }{4}\] where \[n\in z\], because if \[\sin x=\sin y\] then x is given as \[x=n\pi +{{\left( -1 \right)}^{n}}y\].
Hence, the correct answer is option (c).
Note: Alternatively, you can directly multiply and divide the given trigonometric equation simultaneously with \[\sqrt{2}\] and achieve \[\sqrt{2}\sin \left( x+\dfrac{\pi }{4} \right)=1\] directly, thus saving time. Using identities in solving trigonometric functions plays a key role in these types of questions.
Given, \[\sin x+\cos x=1\], which is a trigonometric equation.
This is a problem based on finding out the general solution of a trigonometric equation.
To initiate the process, let us assume a trigonometric equation:
\[r\sin \left( x+a \right)=1\].
\[r\sin \cos a+r\cos x\sin a=1\].
We have written the above equation using the trigonometry compound angle formula which is given below:
\[\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B.\]
Now let us compare both the equations:
\[r\sin \cos a+r\cos x\sin a=1\]with \[\sin x+\cos x=1\].
Through that we have:
\[\begin{align}
& r\cos a=1 \\
& \Rightarrow \cos a=\dfrac{1}{r}.........(i) \\
& r\sin a=1 \\
& \Rightarrow \sin a=\dfrac{1}{r}.........(ii) \\
\end{align}\]
Dividing the above-mentioned equations, we get:
\[\dfrac{\sin a}{\cos a}=\dfrac{\dfrac{1}{r}}{\dfrac{1}{r}}\]
\[\Rightarrow tana=1\]
But we know, $\tan \dfrac{\pi }{4}=1$
So, the value of a is \[\dfrac{\pi }{4}\].
As we know that \[{{\cos }^{2}}a+{{\sin }^{2}}a=1\], substituting values from equation (i) and (ii), we can rewrite this equation as:
\[\dfrac{1}{{{r}^{2}}}+\dfrac{1}{{{r}^{2}}}=1\].
\[\Rightarrow \dfrac{2}{{{r}^{2}}}=1\]
\[{{r}^{2}}=2\]
Taking the square root on both sides, we get
\[r=\sqrt{2}\].
Substituting the value of ‘r’ and ‘a’ in the assumed equation\[r\sin \left( x+a \right)=1\], we have:
\[\sqrt{2}\sin \left( x+\dfrac{\pi }{4} \right)=1\]
\[\sin \left( x+\dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\]
But we know, $\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$ , substituting this value the above equation can be written as,
\[\sin \left( x+\dfrac{\pi }{4} \right)=\sin \dfrac{\pi }{4}\]
The general solution of this equation is
\[\Rightarrow x+\dfrac{\pi }{4}=n\pi +{{\left( -1 \right)}^{n}}\dfrac{\pi }{4}\], for \[n=0,\pm 1,\pm 2,\pm 3..........\]
Therefore \[x=n\pi +{{\left( -1 \right)}^{n}}\dfrac{\pi }{4}-\dfrac{\pi }{4}\] where \[n\in z\], because if \[\sin x=\sin y\] then x is given as \[x=n\pi +{{\left( -1 \right)}^{n}}y\].
Hence, the correct answer is option (c).
Note: Alternatively, you can directly multiply and divide the given trigonometric equation simultaneously with \[\sqrt{2}\] and achieve \[\sqrt{2}\sin \left( x+\dfrac{\pi }{4} \right)=1\] directly, thus saving time. Using identities in solving trigonometric functions plays a key role in these types of questions.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
For which of the following reactions H is equal to class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
In the reaction 2FeCl3 + H2S to 2FeCl2 + 2HCl + S class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
A stone is projected with speed 20 ms at angle 37circ class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE