
The general solution of the trigonometric equation \[\sin x+\cos x=1\], for \[n=0,\pm 1,\pm 2,\pm 3..........\] is given by:
(a) \[x=2n\pi \]
(b) \[x=2n\pi +\dfrac{1}{2}\pi \]
(c) \[x=n\pi +{{(-1)}^{n}}\dfrac{\pi }{4}-\dfrac{\pi }{4}\]
(d) None of these
Answer
613.8k+ views
Hint: Firstly, consider an expression of the form \[r\sin \left( x+a \right)=1\]. Expand this expression using the formula, \[\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B\] and compare with the given trigonometric function in the question. Upon using the required trigonometric identity of sine function and the general solution, we can compute the answer.
Given, \[\sin x+\cos x=1\], which is a trigonometric equation.
This is a problem based on finding out the general solution of a trigonometric equation.
To initiate the process, let us assume a trigonometric equation:
\[r\sin \left( x+a \right)=1\].
\[r\sin \cos a+r\cos x\sin a=1\].
We have written the above equation using the trigonometry compound angle formula which is given below:
\[\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B.\]
Now let us compare both the equations:
\[r\sin \cos a+r\cos x\sin a=1\]with \[\sin x+\cos x=1\].
Through that we have:
\[\begin{align}
& r\cos a=1 \\
& \Rightarrow \cos a=\dfrac{1}{r}.........(i) \\
& r\sin a=1 \\
& \Rightarrow \sin a=\dfrac{1}{r}.........(ii) \\
\end{align}\]
Dividing the above-mentioned equations, we get:
\[\dfrac{\sin a}{\cos a}=\dfrac{\dfrac{1}{r}}{\dfrac{1}{r}}\]
\[\Rightarrow tana=1\]
But we know, $\tan \dfrac{\pi }{4}=1$
So, the value of a is \[\dfrac{\pi }{4}\].
As we know that \[{{\cos }^{2}}a+{{\sin }^{2}}a=1\], substituting values from equation (i) and (ii), we can rewrite this equation as:
\[\dfrac{1}{{{r}^{2}}}+\dfrac{1}{{{r}^{2}}}=1\].
\[\Rightarrow \dfrac{2}{{{r}^{2}}}=1\]
\[{{r}^{2}}=2\]
Taking the square root on both sides, we get
\[r=\sqrt{2}\].
Substituting the value of ‘r’ and ‘a’ in the assumed equation\[r\sin \left( x+a \right)=1\], we have:
\[\sqrt{2}\sin \left( x+\dfrac{\pi }{4} \right)=1\]
\[\sin \left( x+\dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\]
But we know, $\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$ , substituting this value the above equation can be written as,
\[\sin \left( x+\dfrac{\pi }{4} \right)=\sin \dfrac{\pi }{4}\]
The general solution of this equation is
\[\Rightarrow x+\dfrac{\pi }{4}=n\pi +{{\left( -1 \right)}^{n}}\dfrac{\pi }{4}\], for \[n=0,\pm 1,\pm 2,\pm 3..........\]
Therefore \[x=n\pi +{{\left( -1 \right)}^{n}}\dfrac{\pi }{4}-\dfrac{\pi }{4}\] where \[n\in z\], because if \[\sin x=\sin y\] then x is given as \[x=n\pi +{{\left( -1 \right)}^{n}}y\].
Hence, the correct answer is option (c).
Note: Alternatively, you can directly multiply and divide the given trigonometric equation simultaneously with \[\sqrt{2}\] and achieve \[\sqrt{2}\sin \left( x+\dfrac{\pi }{4} \right)=1\] directly, thus saving time. Using identities in solving trigonometric functions plays a key role in these types of questions.
Given, \[\sin x+\cos x=1\], which is a trigonometric equation.
This is a problem based on finding out the general solution of a trigonometric equation.
To initiate the process, let us assume a trigonometric equation:
\[r\sin \left( x+a \right)=1\].
\[r\sin \cos a+r\cos x\sin a=1\].
We have written the above equation using the trigonometry compound angle formula which is given below:
\[\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B.\]
Now let us compare both the equations:
\[r\sin \cos a+r\cos x\sin a=1\]with \[\sin x+\cos x=1\].
Through that we have:
\[\begin{align}
& r\cos a=1 \\
& \Rightarrow \cos a=\dfrac{1}{r}.........(i) \\
& r\sin a=1 \\
& \Rightarrow \sin a=\dfrac{1}{r}.........(ii) \\
\end{align}\]
Dividing the above-mentioned equations, we get:
\[\dfrac{\sin a}{\cos a}=\dfrac{\dfrac{1}{r}}{\dfrac{1}{r}}\]
\[\Rightarrow tana=1\]
But we know, $\tan \dfrac{\pi }{4}=1$
So, the value of a is \[\dfrac{\pi }{4}\].
As we know that \[{{\cos }^{2}}a+{{\sin }^{2}}a=1\], substituting values from equation (i) and (ii), we can rewrite this equation as:
\[\dfrac{1}{{{r}^{2}}}+\dfrac{1}{{{r}^{2}}}=1\].
\[\Rightarrow \dfrac{2}{{{r}^{2}}}=1\]
\[{{r}^{2}}=2\]
Taking the square root on both sides, we get
\[r=\sqrt{2}\].
Substituting the value of ‘r’ and ‘a’ in the assumed equation\[r\sin \left( x+a \right)=1\], we have:
\[\sqrt{2}\sin \left( x+\dfrac{\pi }{4} \right)=1\]
\[\sin \left( x+\dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\]
But we know, $\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$ , substituting this value the above equation can be written as,
\[\sin \left( x+\dfrac{\pi }{4} \right)=\sin \dfrac{\pi }{4}\]
The general solution of this equation is
\[\Rightarrow x+\dfrac{\pi }{4}=n\pi +{{\left( -1 \right)}^{n}}\dfrac{\pi }{4}\], for \[n=0,\pm 1,\pm 2,\pm 3..........\]
Therefore \[x=n\pi +{{\left( -1 \right)}^{n}}\dfrac{\pi }{4}-\dfrac{\pi }{4}\] where \[n\in z\], because if \[\sin x=\sin y\] then x is given as \[x=n\pi +{{\left( -1 \right)}^{n}}y\].
Hence, the correct answer is option (c).
Note: Alternatively, you can directly multiply and divide the given trigonometric equation simultaneously with \[\sqrt{2}\] and achieve \[\sqrt{2}\sin \left( x+\dfrac{\pi }{4} \right)=1\] directly, thus saving time. Using identities in solving trigonometric functions plays a key role in these types of questions.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

10 examples of friction in our daily life

