Answer
Verified
113.4k+ views
Hint: In this question, the concept of the pressure is used to calculate the mass of the piston that is pressure is the equal to the applied force per unit area of cross-section of the object and use the force equilibrium equation to obtain the result.
Complete step by step solution:
As we know that the pressure is equal to force per unit area and can be written as,
$ \Rightarrow P = \dfrac{F}{A}$
Where, the applied force is $F$ and the area of cross-section is $A$.
And we also know that the force is also equal to the weight of the object which is the product of acceleration due to gravity and mass of the object and can be written as,
$ \Rightarrow F = mg$
Here, the mass of the object is $m$ and the acceleration due to gravity is $g$.
From the above diagram, we can understand, the piston is pushing the gas downwards along with the atmospheric pressure which is also in the downward direction. The pressure applied by the gas is in an upward direction.
Therefore, we can write,
$ \Rightarrow {F_{gas}} = {F_{atmospheric}} + {F_p}......\left( 1 \right)$
Now, as we know that ${F_p} = mg$ and
$ \Rightarrow P = \dfrac{F}{A}$
Now, we rearrange the above equation as,
$ \Rightarrow F = PA$
Therefore, according to equation (1), when we substitute the value for atmospheric pressure, pressure by gas molecules and force by the piston, we get the following result:
\[ \Rightarrow mg + {P_{atmospheric}}A = {P_{gas}}A......\left( 2 \right)\]
In the question we have given the following quantities,
$ \Rightarrow g = 10\;{\text{m/}}{{\text{s}}^{\text{2}}}$
\[ \Rightarrow A = 4.0 \times {10^{ - 4}}\;{{\text{m}}^2}\]
\[ \Rightarrow {P_{gas}} = 1.5 \times {10^5}\;{\text{Pa}}\]
\[ \Rightarrow {P_{atmospheric}} = 1.0 \times {10^5}\;{\text{Pa}}\]
Substituting the above values in equation (2), we get the following result:
$m \times 10 + \left( {1.5 \times {{10}^5} \times 4.0 \times {{10}^{ - 4}}} \right) = 1.0 \times {10^5} \times 4.0 \times {10^{ - 4}}$
Simplify the above expression we get,
$m \times 10 = 0.5 \times 4.0 \times 10$
After simplification we get
$m = 2\;{\text{kg}}$
So, after solving the above equation we get the value of mass of the piston which is $2\;{\text{kg}}$.
So, the correct option is option (B).
Note: As we know that the pressure applied by the piston and atmosphere is added. It is equal to the pressure applied by the gas molecules inside the cylinder. This is because the piston is not moving and so the force or the pressure is equal from both the sides, that is, above and below the piston.
Complete step by step solution:
As we know that the pressure is equal to force per unit area and can be written as,
$ \Rightarrow P = \dfrac{F}{A}$
Where, the applied force is $F$ and the area of cross-section is $A$.
And we also know that the force is also equal to the weight of the object which is the product of acceleration due to gravity and mass of the object and can be written as,
$ \Rightarrow F = mg$
Here, the mass of the object is $m$ and the acceleration due to gravity is $g$.
From the above diagram, we can understand, the piston is pushing the gas downwards along with the atmospheric pressure which is also in the downward direction. The pressure applied by the gas is in an upward direction.
Therefore, we can write,
$ \Rightarrow {F_{gas}} = {F_{atmospheric}} + {F_p}......\left( 1 \right)$
Now, as we know that ${F_p} = mg$ and
$ \Rightarrow P = \dfrac{F}{A}$
Now, we rearrange the above equation as,
$ \Rightarrow F = PA$
Therefore, according to equation (1), when we substitute the value for atmospheric pressure, pressure by gas molecules and force by the piston, we get the following result:
\[ \Rightarrow mg + {P_{atmospheric}}A = {P_{gas}}A......\left( 2 \right)\]
In the question we have given the following quantities,
$ \Rightarrow g = 10\;{\text{m/}}{{\text{s}}^{\text{2}}}$
\[ \Rightarrow A = 4.0 \times {10^{ - 4}}\;{{\text{m}}^2}\]
\[ \Rightarrow {P_{gas}} = 1.5 \times {10^5}\;{\text{Pa}}\]
\[ \Rightarrow {P_{atmospheric}} = 1.0 \times {10^5}\;{\text{Pa}}\]
Substituting the above values in equation (2), we get the following result:
$m \times 10 + \left( {1.5 \times {{10}^5} \times 4.0 \times {{10}^{ - 4}}} \right) = 1.0 \times {10^5} \times 4.0 \times {10^{ - 4}}$
Simplify the above expression we get,
$m \times 10 = 0.5 \times 4.0 \times 10$
After simplification we get
$m = 2\;{\text{kg}}$
So, after solving the above equation we get the value of mass of the piston which is $2\;{\text{kg}}$.
So, the correct option is option (B).
Note: As we know that the pressure applied by the piston and atmosphere is added. It is equal to the pressure applied by the gas molecules inside the cylinder. This is because the piston is not moving and so the force or the pressure is equal from both the sides, that is, above and below the piston.
Recently Updated Pages
Updated JEE Main Syllabus 2025 - Subject-wise Syllabus and More
JEE Main 2025 Exam Date: Check Important Dates and Schedule
JEE Main Admit Card 2025 Release Date and Time with Steps to Download
JEE Main 2025 City Intimation Slip: Downloading Link and Exam Centres
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
Laws of Motion Class 11 Notes CBSE Physics Chapter 4 (Free PDF Download)