Answer
Verified
108k+ views
Hint: From the graph it is evident that the current remains the same in both the time stamps. So we can just use the current formula to calculate the charges in both the cases and then divide them to obtain the ratio.
Formulas used
$i = \dfrac{q}{t}$ where $i$ is the current flowing through the conductor, $q$ is the charge and $t$ is the time taken.
Complete step by step answer
Electric current is defined as the flow of electric charge (electrons) per unit time through a conducting medium. Its SI unit is Ampere and is symbolized by $A$. It is measured using a device called the ammeter.
The flow of electric current is due to the stream of charged particles such as electrons from a region of higher potential to a region of lower potential. This means that current can only flow through a medium when there is a potential difference present.
Now, we can solve the question given by using the definition of current which gives us the relation,
$i = \dfrac{q}{t}$ where $i$ is the current flowing through the conductor, $q$ is the charge and $t$ is the time taken.
On the graph given above we see that the value of current is constant from time $t = 7.5s$to $15s$ and beyond.
So, using the current equation we can write,
${q_1} = 6 \times 7.5$$C$ where ${q_1}$is the charge at $t = 7.5s$
Similarly,
${q_2} = 6 \times 15C$ where ${q_2}$ is the charge at $t = 15s$
Dividing these two equations we get,
$\dfrac{{{q_1}}}{{{q_2}}} = \dfrac{{6 \times 7.5}}{{6 \times 15}}$
$ \Rightarrow \dfrac{{{q_1}}}{{{q_2}}} = \dfrac{1}{2}$
${q_1}:{q_2} = 1:2$
Therefore, the correct option is B.
Note: In a conductor, the total current is due to the flow of electrons which are negative charge carriers. However, in case of semiconductors, the flow of current is due to both positive and negative carriers. Unlike conductors, semiconductors can only conduct electricity at very high temperatures. This is due to the fact that semiconductors have a negative coefficient of resistance with temperature. Which means that their resistance decreases with increase in temperature.
Formulas used
$i = \dfrac{q}{t}$ where $i$ is the current flowing through the conductor, $q$ is the charge and $t$ is the time taken.
Complete step by step answer
Electric current is defined as the flow of electric charge (electrons) per unit time through a conducting medium. Its SI unit is Ampere and is symbolized by $A$. It is measured using a device called the ammeter.
The flow of electric current is due to the stream of charged particles such as electrons from a region of higher potential to a region of lower potential. This means that current can only flow through a medium when there is a potential difference present.
Now, we can solve the question given by using the definition of current which gives us the relation,
$i = \dfrac{q}{t}$ where $i$ is the current flowing through the conductor, $q$ is the charge and $t$ is the time taken.
On the graph given above we see that the value of current is constant from time $t = 7.5s$to $15s$ and beyond.
So, using the current equation we can write,
${q_1} = 6 \times 7.5$$C$ where ${q_1}$is the charge at $t = 7.5s$
Similarly,
${q_2} = 6 \times 15C$ where ${q_2}$ is the charge at $t = 15s$
Dividing these two equations we get,
$\dfrac{{{q_1}}}{{{q_2}}} = \dfrac{{6 \times 7.5}}{{6 \times 15}}$
$ \Rightarrow \dfrac{{{q_1}}}{{{q_2}}} = \dfrac{1}{2}$
${q_1}:{q_2} = 1:2$
Therefore, the correct option is B.
Note: In a conductor, the total current is due to the flow of electrons which are negative charge carriers. However, in case of semiconductors, the flow of current is due to both positive and negative carriers. Unlike conductors, semiconductors can only conduct electricity at very high temperatures. This is due to the fact that semiconductors have a negative coefficient of resistance with temperature. Which means that their resistance decreases with increase in temperature.
Recently Updated Pages
If x is real then the maximum and minimum values of class 10 maths JEE_Main
If one of the roots of equation x2+ax+30 is 3 and one class 10 maths JEE_Main
The HCF of two numbers is 96 and their LCM is 1296 class 10 maths JEE_Main
The height of a cone is 21 cm Find the area of the class 10 maths JEE_Main
In a family each daughter has the same number of brothers class 10 maths JEE_Main
If the vertices of a triangle are ab cc b0 and b0c class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
A 5m long pole of 3kg mass is placed against a smooth class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main
The number of d p bonds present respectively in SO2 class 11 chemistry JEE_Main
As a result of isobaric heating Delta T 72K one mole class 11 physics JEE_Main