Answer
Verified
462k+ views
Hint: We will first consider the graph of the general form of equation, \[y = mx\]. As we need to find the point through which the line passes, so we will make the graph of the line \[y = mx\] and from there we can check through which point the line is passing by. As we know that the graph of a linear equation is always a straight line and the given equation is also a linear equation then the graph we have will also be of the straight line.
Complete step by step Answer:
As we will first consider the given equation of a line in the question, that is \[y = mx\].
We will first make the graph of the line \[y = mx\] where \[m\] represents the slope of the line.
Thus, we get,
Now, the graph is of a straight line and from the graph we can see that the line \[y = mx\] is passing through the origin \[{\text{o}}\left( {0,0} \right)\].
Thus, we can conclude that the equation \[y = mx\] always passes through the origin.
Hence, option D is correct.
Note: As the graph of the linear equation is always a straight line so we also have a linear equation whose graph is of a straight line. Also, every point on the straight line is the solution of the linear equation, and as we can observe that the line is passing through the origin. The general form of the equation with slope \[m\] is \[y - {y_1} = m\left( {x - {x_1}} \right)\]. Also, while constructing the figure, draw the line of the equation properly for solving the further solution.
Complete step by step Answer:
As we will first consider the given equation of a line in the question, that is \[y = mx\].
We will first make the graph of the line \[y = mx\] where \[m\] represents the slope of the line.
Thus, we get,
Now, the graph is of a straight line and from the graph we can see that the line \[y = mx\] is passing through the origin \[{\text{o}}\left( {0,0} \right)\].
Thus, we can conclude that the equation \[y = mx\] always passes through the origin.
Hence, option D is correct.
Note: As the graph of the linear equation is always a straight line so we also have a linear equation whose graph is of a straight line. Also, every point on the straight line is the solution of the linear equation, and as we can observe that the line is passing through the origin. The general form of the equation with slope \[m\] is \[y - {y_1} = m\left( {x - {x_1}} \right)\]. Also, while constructing the figure, draw the line of the equation properly for solving the further solution.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE