Answer
Verified
398.4k+ views
Hint:We are surrounded by gravitational force. It determines how much we weigh and how far a basketball travels before returning to the ground when tossed. The force exerted by the Earth on you is equal to the force exerted by the Earth on you. The gravity force equals your weight when you're at rest on or near the Earth's surface. The acceleration of gravity on a particular planetary body, such as Venus or the Moon, is different than on Earth, because if you stood on a scale, it would show you weighing a different volume than on Earth.
Complete step by step answer:
Any particle in the universe attracts every other particle in the universe with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between their poles, according to Newton's law of universal gravitation. The theory's publication was dubbed the "first great convergence" because it brought together previously established gravity phenomena on Earth with known astronomical activities.We know that \[F = G\dfrac{{{m_1}{m_2}}}{{{r^2}}}\].
(i) The gravitational force $F$ between two objects separated by $r$, according to Newton's law of gravitation, is
\[F \propto \dfrac{1}{{{r^2}}}\]
When $r$ is halved
\[{r^\prime } = \dfrac{r}{2}\]
Force becomes
\[\dfrac{{{F^\prime }}}{F} = \dfrac{{{r^2}}}{{{r^{'2}}}}
\Rightarrow \dfrac{{{F^\prime }}}{F}= \dfrac{{{r^2}}}{{{{(r/2)}^2}}}
\Rightarrow \dfrac{{{F^\prime }}}{F}= 4\]
\[\therefore {F^\prime } = 4F\]
(ii) The gravitational force F between two particles of mass and, according to Newton's law of gravitation, is
\[F \propto {m_1}{m_2}\]
When each mass is quadrupled
\[{m_1}' = 4{m_1}{\rm{ and }}{m_2}' = 4{m_2}\]
Force becomes
\[{F^\prime } \propto m_1^\prime m_2^\prime \]
\[\Rightarrow \dfrac{{{F^\prime }}}{F} = \dfrac{{m_1^\prime {m^\prime }2}}{{{m_1}{m_2}}} \\
\Rightarrow \dfrac{{{F^\prime }}}{F}= \dfrac{{\left( {4{m_1}} \right)\left( {4{m_2}} \right)}}{{{m_1}{m_2}}} \\
\Rightarrow \dfrac{{{F^\prime }}}{F}= 16\]
\[\therefore {F^\prime } = 16F\]
Note:The rule notes that some point mass attracts every other point mass by a force acting along the line intersecting the two points in today's terminology. The force is proportional to the product of the two masses, and it is inversely proportional to the square of their distance.
Complete step by step answer:
Any particle in the universe attracts every other particle in the universe with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between their poles, according to Newton's law of universal gravitation. The theory's publication was dubbed the "first great convergence" because it brought together previously established gravity phenomena on Earth with known astronomical activities.We know that \[F = G\dfrac{{{m_1}{m_2}}}{{{r^2}}}\].
(i) The gravitational force $F$ between two objects separated by $r$, according to Newton's law of gravitation, is
\[F \propto \dfrac{1}{{{r^2}}}\]
When $r$ is halved
\[{r^\prime } = \dfrac{r}{2}\]
Force becomes
\[\dfrac{{{F^\prime }}}{F} = \dfrac{{{r^2}}}{{{r^{'2}}}}
\Rightarrow \dfrac{{{F^\prime }}}{F}= \dfrac{{{r^2}}}{{{{(r/2)}^2}}}
\Rightarrow \dfrac{{{F^\prime }}}{F}= 4\]
\[\therefore {F^\prime } = 4F\]
(ii) The gravitational force F between two particles of mass and, according to Newton's law of gravitation, is
\[F \propto {m_1}{m_2}\]
When each mass is quadrupled
\[{m_1}' = 4{m_1}{\rm{ and }}{m_2}' = 4{m_2}\]
Force becomes
\[{F^\prime } \propto m_1^\prime m_2^\prime \]
\[\Rightarrow \dfrac{{{F^\prime }}}{F} = \dfrac{{m_1^\prime {m^\prime }2}}{{{m_1}{m_2}}} \\
\Rightarrow \dfrac{{{F^\prime }}}{F}= \dfrac{{\left( {4{m_1}} \right)\left( {4{m_2}} \right)}}{{{m_1}{m_2}}} \\
\Rightarrow \dfrac{{{F^\prime }}}{F}= 16\]
\[\therefore {F^\prime } = 16F\]
Note:The rule notes that some point mass attracts every other point mass by a force acting along the line intersecting the two points in today's terminology. The force is proportional to the product of the two masses, and it is inversely proportional to the square of their distance.
Recently Updated Pages
There are two sample of HCI having molarity 1M and class 11 chemistry JEE_Main
For the reaction I + ClO3 + H2SO4 to Cl + HSO4 + I2 class 11 chemistry JEE_Main
What happens to the gravitational force between two class 11 physics NEET
In the reaction 2NH4 + + 6NO3 aq + 4H + aq to 6NO2g class 11 chemistry JEE_Main
A weightless rod is acted upon by upward parallel forces class 11 phy sec 1 JEE_Main
From a uniform circular disc of radius R and mass 9 class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE