Answer
Verified
503.1k+ views
Hint:- Apply Pythagoras Theorem.
Let the two legs of the triangle be \[x\] and \[y\].
And let the smaller leg be \[x\].
And the larger leg be \[y\].
As, we are given with the initial length of hypotenuse of the right-angled triangle.
So, according to Pythagoras theorem.
Sum of squares of two sides of a right-angled triangle is equal to the square of its hypotenuse.
So, \[{\left( x \right)^2} + {\left( y \right)^2} = {\left( {3\sqrt {10} } \right)^2}\]
\[ \Rightarrow {\left( x \right)^2} + {\left( y \right)^2} = 90\] (1)
Now, going to the other condition,
Smaller leg is tripled. So, the smaller leg becomes \[3x\].
Larger leg is doubled. So, the larger leg becomes \[2y\].
And, as given in the question, that new hypotenuse is \[9\sqrt 5 \].
So, again applying Pythagora's theorem.
\[{\left( {3x} \right)^2} + {\left( {2y} \right)^2} = {\left( {9\sqrt 5 } \right)^2}\]
\[ \Rightarrow 9{x^2} + 4{y^2} = 405\] (2)
Now, we had to find the value of\[x\] and \[y\] using equation 1 and 2.
So, splitting \[9{x^2}\] from equation 2. We get,
\[ \Rightarrow 5{x^2} + 4({x^2} + {y^2}) = 405\]
Now, putting the value of \[{x^2} + {y^2}\] from equation 1 to above equation we get.
\[
\Rightarrow 5{x^2} + 360 = 405 \\
\Rightarrow 5{x^2} = 405 - 360 = 45 \\
\Rightarrow {x^2} = 9 \\
\]
As, \[x\] and \[y\] are the length of sides of a triangle. So, they can have only positive values.
So, \[x = 3\]
Now, putting the value of \[x\] in equation 1. We get,
\[
\Rightarrow {y^2} + 9 = 90 \\
\Rightarrow {y^2} = 81 \\
\Rightarrow y = 9 \\
\]
Hence, sides of the right-angled triangle are 9cm and 3cm.
Note:-In these types of problems first find all the equations for the given conditions
using Pythagoras theorem. And then find the value of each side by solving the quadratic
equation. And remember that the length of the side should always be positive.
Let the two legs of the triangle be \[x\] and \[y\].
And let the smaller leg be \[x\].
And the larger leg be \[y\].
As, we are given with the initial length of hypotenuse of the right-angled triangle.
So, according to Pythagoras theorem.
Sum of squares of two sides of a right-angled triangle is equal to the square of its hypotenuse.
So, \[{\left( x \right)^2} + {\left( y \right)^2} = {\left( {3\sqrt {10} } \right)^2}\]
\[ \Rightarrow {\left( x \right)^2} + {\left( y \right)^2} = 90\] (1)
Now, going to the other condition,
Smaller leg is tripled. So, the smaller leg becomes \[3x\].
Larger leg is doubled. So, the larger leg becomes \[2y\].
And, as given in the question, that new hypotenuse is \[9\sqrt 5 \].
So, again applying Pythagora's theorem.
\[{\left( {3x} \right)^2} + {\left( {2y} \right)^2} = {\left( {9\sqrt 5 } \right)^2}\]
\[ \Rightarrow 9{x^2} + 4{y^2} = 405\] (2)
Now, we had to find the value of\[x\] and \[y\] using equation 1 and 2.
So, splitting \[9{x^2}\] from equation 2. We get,
\[ \Rightarrow 5{x^2} + 4({x^2} + {y^2}) = 405\]
Now, putting the value of \[{x^2} + {y^2}\] from equation 1 to above equation we get.
\[
\Rightarrow 5{x^2} + 360 = 405 \\
\Rightarrow 5{x^2} = 405 - 360 = 45 \\
\Rightarrow {x^2} = 9 \\
\]
As, \[x\] and \[y\] are the length of sides of a triangle. So, they can have only positive values.
So, \[x = 3\]
Now, putting the value of \[x\] in equation 1. We get,
\[
\Rightarrow {y^2} + 9 = 90 \\
\Rightarrow {y^2} = 81 \\
\Rightarrow y = 9 \\
\]
Hence, sides of the right-angled triangle are 9cm and 3cm.
Note:-In these types of problems first find all the equations for the given conditions
using Pythagoras theorem. And then find the value of each side by solving the quadratic
equation. And remember that the length of the side should always be positive.
Recently Updated Pages
Two spheres of masses m and M are situated in air and class 9 physics CBSE
A key of a mechanical piano struck gently and then class 9 physics CBSE
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
A girl is carrying a school bag of 3 kg mass on her class 9 science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
What is pollution? How many types of pollution? Define it
Voters list is known as A Ticket B Nomination form class 9 social science CBSE