Answer
Verified
441.3k+ views
Hint:
To solve this problem, we will first differentiate the given function with respect to the given variable and then we will equate this with zero. From there, we will find all possible values of the variable. Then we will check the maximum and minimum values by putting them in the given function. From there, we will get the required image of the given interval.
Complete step by step solution:
We know that the least and greatest values of a function say \[g\left( x \right)\] can be obtained by computing the \[g'\left( x \right)\] and putting \[g'\left( x \right) = 0\] to get all possible values of \[x\] . So we will use this technique for \[f\left( x \right)\].
We have \[f\left( x \right) = 4{x^2} - 12x\;\]and the interval is given as \[\left[ { - 1,{\rm{ }}3} \right]\;\]
We will compute the value of \[f\left( x \right)\] when \[x = - 1\].
\[ \Rightarrow f\left( { - 1} \right) = 4{\left( { - 1} \right)^2} - 12\left( { - 1} \right)\;\]
On multiplying the terms, we get
\[ \Rightarrow f\left( { - 1} \right) = 4 + 12\]
On adding these numbers, we get
\[ \Rightarrow f\left( { - 1} \right) = 16\] …………. \[\left( 1 \right)\]
So, we have got the value \[f\left( { - 1} \right) = 16\]
Similarly, We will compute the value of \[f\left( x \right)\] when \[x = 3\].
\[ \Rightarrow f\left( 3 \right) = 4{\left( 3 \right)^2} - 12\left( 3 \right)\;\]
On multiplying the terms, we get
\[ \Rightarrow f\left( 3 \right) = 36 - 36\]
On subtracting these numbers, we get
\[ \Rightarrow f\left( 3 \right) = 0\] ……… \[\left( 2 \right)\]
So, we have got the value \[f\left( 3 \right) = 0\]
Now, we will compute \[f'\left( x \right)\].
\[ \Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left( {4{x^2} - 12x} \right)\;\]
On differentiating each term, we get
\[ \Rightarrow f'\left( x \right) = 8x - 12\;\]
Now, we will put \[f'\left( x \right) = 0\]
\[ \Rightarrow f'\left( x \right) = 8x - 12\; = 0\]
On further simplification, we get
\[ \Rightarrow 8x\; = 12\]
Dividing both sides by 8, we get
\[ \Rightarrow x\; = \dfrac{{12}}{8}\]
On further simplifying the fraction, we get
\[ \Rightarrow x\; = \dfrac{3}{2}\]
Now, we will compute the value of \[f\left( x \right)\] when \[x = \dfrac{3}{2}\].
\[ \Rightarrow f\left( {\dfrac{3}{2}} \right) = 4{\left( {\dfrac{3}{2}} \right)^2} - 12\left( {\dfrac{3}{2}} \right)\;\]
On multiplying the terms, we get
\[ \Rightarrow f\left( {\dfrac{3}{2}} \right) = 9 - 18\]
On subtracting these numbers, we get
\[ \Rightarrow f\left( {\dfrac{3}{2}} \right) = - 9\] …………. \[\left( 3 \right)\]
From equation 1, equation 2 and equation 3, we have got the maximum value of \[f\left( x \right)\] as 16 at \[x = - 1\] and minimum value of \[f\left( x \right)\] as -9 at \[x = \dfrac{3}{2}\].
Thus, the image interval is given by \[\left[ { - 9,{\rm{ 16}}} \right]\;\].
Hence, the correct option is option B.
Note:
Since we have obtained the maximum and minimum value of a function. Here, the maximum or minimum of the function are known as "Global" or "Absolute" maximum or minimum. There can be only one global maximum (and one global minimum) but there can be more than one local minimum or maximum.
To solve this problem, we will first differentiate the given function with respect to the given variable and then we will equate this with zero. From there, we will find all possible values of the variable. Then we will check the maximum and minimum values by putting them in the given function. From there, we will get the required image of the given interval.
Complete step by step solution:
We know that the least and greatest values of a function say \[g\left( x \right)\] can be obtained by computing the \[g'\left( x \right)\] and putting \[g'\left( x \right) = 0\] to get all possible values of \[x\] . So we will use this technique for \[f\left( x \right)\].
We have \[f\left( x \right) = 4{x^2} - 12x\;\]and the interval is given as \[\left[ { - 1,{\rm{ }}3} \right]\;\]
We will compute the value of \[f\left( x \right)\] when \[x = - 1\].
\[ \Rightarrow f\left( { - 1} \right) = 4{\left( { - 1} \right)^2} - 12\left( { - 1} \right)\;\]
On multiplying the terms, we get
\[ \Rightarrow f\left( { - 1} \right) = 4 + 12\]
On adding these numbers, we get
\[ \Rightarrow f\left( { - 1} \right) = 16\] …………. \[\left( 1 \right)\]
So, we have got the value \[f\left( { - 1} \right) = 16\]
Similarly, We will compute the value of \[f\left( x \right)\] when \[x = 3\].
\[ \Rightarrow f\left( 3 \right) = 4{\left( 3 \right)^2} - 12\left( 3 \right)\;\]
On multiplying the terms, we get
\[ \Rightarrow f\left( 3 \right) = 36 - 36\]
On subtracting these numbers, we get
\[ \Rightarrow f\left( 3 \right) = 0\] ……… \[\left( 2 \right)\]
So, we have got the value \[f\left( 3 \right) = 0\]
Now, we will compute \[f'\left( x \right)\].
\[ \Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left( {4{x^2} - 12x} \right)\;\]
On differentiating each term, we get
\[ \Rightarrow f'\left( x \right) = 8x - 12\;\]
Now, we will put \[f'\left( x \right) = 0\]
\[ \Rightarrow f'\left( x \right) = 8x - 12\; = 0\]
On further simplification, we get
\[ \Rightarrow 8x\; = 12\]
Dividing both sides by 8, we get
\[ \Rightarrow x\; = \dfrac{{12}}{8}\]
On further simplifying the fraction, we get
\[ \Rightarrow x\; = \dfrac{3}{2}\]
Now, we will compute the value of \[f\left( x \right)\] when \[x = \dfrac{3}{2}\].
\[ \Rightarrow f\left( {\dfrac{3}{2}} \right) = 4{\left( {\dfrac{3}{2}} \right)^2} - 12\left( {\dfrac{3}{2}} \right)\;\]
On multiplying the terms, we get
\[ \Rightarrow f\left( {\dfrac{3}{2}} \right) = 9 - 18\]
On subtracting these numbers, we get
\[ \Rightarrow f\left( {\dfrac{3}{2}} \right) = - 9\] …………. \[\left( 3 \right)\]
From equation 1, equation 2 and equation 3, we have got the maximum value of \[f\left( x \right)\] as 16 at \[x = - 1\] and minimum value of \[f\left( x \right)\] as -9 at \[x = \dfrac{3}{2}\].
Thus, the image interval is given by \[\left[ { - 9,{\rm{ 16}}} \right]\;\].
Hence, the correct option is option B.
Note:
Since we have obtained the maximum and minimum value of a function. Here, the maximum or minimum of the function are known as "Global" or "Absolute" maximum or minimum. There can be only one global maximum (and one global minimum) but there can be more than one local minimum or maximum.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE