The incentre of the triangle with vertices (1,$\sqrt 3 $ ),(0,0) and (2,0) is:
A.$\left( {1,\frac{{\sqrt 3 }}{2}} \right)$
B.$\left( {\frac{2}{3},\frac{1}{{\sqrt 3 }}} \right)$
C.$\left( {\frac{2}{3},\frac{{\sqrt 3 }}{2}} \right)$
D.$\left( {1,\frac{1}{{\sqrt 3 }}} \right)$
Answer
Verified
506.4k+ views
Hint-Using the vertices first find out the length of the sides of the triangle and proceed
Let us consider the three vertices to be A=(1,$\sqrt 3 $ ),B=(0,0),C=(2,0) which in turn forms a $\vartriangle ABC$
So, to find out the length make use of the distance formula and solve it
$d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{({y_2} - {y_1})}^2}} $
So, we will get the length of the side AB=$\sqrt {{{\left( {0 - 1} \right)}^2} + {{\left( {0 - \sqrt 3 } \right)}^2}} = \sqrt {1 + 3} = \sqrt 4 = 2$ =c
The length of the side CA=$\sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( {0 - \sqrt 3 } \right)}^2}} = \sqrt {1 + 3} = \sqrt 4 = 2$=b
The length of the side BC=$\sqrt {{{\left( {2 - 0} \right)}^2} + {{\left( {0 - 0} \right)}^2}} = \sqrt {4 + 0} = \sqrt 4 = 2$ =a
So, from this , since the length of sides AB=BC=CA=2, we can conclude that it is an equilateral triangle
Since it is an equilateral triangle, the incentre is nothing but equal to the centroid
So, we can write the coordinates of the incentre are
$\begin{gathered}
\left( {\frac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}},\frac{{a{y_1} + b{y_2} + c{y_3}}}{{a + b + c}}} \right) = \left( {\frac{{2 \times 1 + 2 \times 0 + 2 \times 2}}{{2 + 2 + 2}},\frac{{2 \times \sqrt 3 + 2 \times 0 + 2 \times 0}}{{2 + 2 + 2}}} \right) \\
= \left( {\frac{6}{6},\frac{{2\sqrt 3 }}{6}} \right) = \left( {1,\frac{1}{{\sqrt 3 }}} \right) \\
\end{gathered} $
So, option D is the correct answer to this question.
Note: Whenever we are given with these kind of questions, first find out what type of
triangle is formed from these sides and then apply the formula with respect to the type of
triangle formed and solve
Let us consider the three vertices to be A=(1,$\sqrt 3 $ ),B=(0,0),C=(2,0) which in turn forms a $\vartriangle ABC$
So, to find out the length make use of the distance formula and solve it
$d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{({y_2} - {y_1})}^2}} $
So, we will get the length of the side AB=$\sqrt {{{\left( {0 - 1} \right)}^2} + {{\left( {0 - \sqrt 3 } \right)}^2}} = \sqrt {1 + 3} = \sqrt 4 = 2$ =c
The length of the side CA=$\sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( {0 - \sqrt 3 } \right)}^2}} = \sqrt {1 + 3} = \sqrt 4 = 2$=b
The length of the side BC=$\sqrt {{{\left( {2 - 0} \right)}^2} + {{\left( {0 - 0} \right)}^2}} = \sqrt {4 + 0} = \sqrt 4 = 2$ =a
So, from this , since the length of sides AB=BC=CA=2, we can conclude that it is an equilateral triangle
Since it is an equilateral triangle, the incentre is nothing but equal to the centroid
So, we can write the coordinates of the incentre are
$\begin{gathered}
\left( {\frac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}},\frac{{a{y_1} + b{y_2} + c{y_3}}}{{a + b + c}}} \right) = \left( {\frac{{2 \times 1 + 2 \times 0 + 2 \times 2}}{{2 + 2 + 2}},\frac{{2 \times \sqrt 3 + 2 \times 0 + 2 \times 0}}{{2 + 2 + 2}}} \right) \\
= \left( {\frac{6}{6},\frac{{2\sqrt 3 }}{6}} \right) = \left( {1,\frac{1}{{\sqrt 3 }}} \right) \\
\end{gathered} $
So, option D is the correct answer to this question.
Note: Whenever we are given with these kind of questions, first find out what type of
triangle is formed from these sides and then apply the formula with respect to the type of
triangle formed and solve
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
Explain sex determination in humans with the help of class 12 biology CBSE