
The initial phase angle for $ i = 10\sin \omega t + 8\cos \omega t $ is
(A) $ {\tan ^{ - 1}}\left( {\dfrac{4}{5}} \right) $
(B) $ {\tan ^{ - 1}}\left( {\dfrac{5}{4}} \right) $
(C) $ {\sin ^{ - 1}}\left( {\dfrac{4}{5}} \right) $
(D) $ {90^0} $
Answer
552k+ views
Hint: We are given with an equation and are asked to find the initial phase angle for the same. Thus, we will firstly evaluate the equation at time $ t = 0 $ . Then, we will use some basic trigonometric ideas to manipulate the evaluated value and then come up with an answer.
Complete Step By Step Solution
Here, The given equation is,
$ i = 10\sin \omega t + 8\cos \omega t $
Now, For the initial value, we take time $ t = 0 $
Taking here, we get
$ i = 10\sin \left( 0 \right) + 8\cos \left( 0 \right) $
We know,
$ \sin \left( 0 \right) = 0 $ And $ \cos \left( 0 \right) = 1 $
Thus, we get
$ i = 8\left( 1 \right) $
Further, we get
$ i = 8 $
Now,
$ {i_o} = \sqrt {{{\left( {10} \right)}^2} + {{\left( 8 \right)}^2}} $
Further, we get
$ {i_o} = \sqrt {164} $
Where, $ {i_o} $ is the amplitude of the motion.
Now,
As per the generic equation of such motion,
$ i = {i_o}\sin \left( {\omega t + \phi } \right) $
For time $ t = 0 $ ,
$ i = {i_0}\sin \phi $
Then, we get
$ \sin \phi = \dfrac{i}{{{i_o}}} $
Thus, we get
$ \sin \phi = \dfrac{8}{{\sqrt {164} }} $
Thus,
$ \tan \phi = \dfrac{8}{{\sqrt {164 - 64} }} $
Thus,
$ \tan \phi = \dfrac{8}{{10}} $
Thus,
$ \tan \phi = \dfrac{4}{5} $
Hence, we get
$ \phi = {\tan ^{ - 1}}\left( {\dfrac{4}{5}} \right) $
Hence, the correct option is (A).
Note
We have converted the sine function to a tangent one as all the given options are in the same format. We used basic trigonometry for conversion. One should not confuse it to be a given parameter.
Complete Step By Step Solution
Here, The given equation is,
$ i = 10\sin \omega t + 8\cos \omega t $
Now, For the initial value, we take time $ t = 0 $
Taking here, we get
$ i = 10\sin \left( 0 \right) + 8\cos \left( 0 \right) $
We know,
$ \sin \left( 0 \right) = 0 $ And $ \cos \left( 0 \right) = 1 $
Thus, we get
$ i = 8\left( 1 \right) $
Further, we get
$ i = 8 $
Now,
$ {i_o} = \sqrt {{{\left( {10} \right)}^2} + {{\left( 8 \right)}^2}} $
Further, we get
$ {i_o} = \sqrt {164} $
Where, $ {i_o} $ is the amplitude of the motion.
Now,
As per the generic equation of such motion,
$ i = {i_o}\sin \left( {\omega t + \phi } \right) $
For time $ t = 0 $ ,
$ i = {i_0}\sin \phi $
Then, we get
$ \sin \phi = \dfrac{i}{{{i_o}}} $
Thus, we get
$ \sin \phi = \dfrac{8}{{\sqrt {164} }} $
Thus,
$ \tan \phi = \dfrac{8}{{\sqrt {164 - 64} }} $
Thus,
$ \tan \phi = \dfrac{8}{{10}} $
Thus,
$ \tan \phi = \dfrac{4}{5} $
Hence, we get
$ \phi = {\tan ^{ - 1}}\left( {\dfrac{4}{5}} \right) $
Hence, the correct option is (A).
Note
We have converted the sine function to a tangent one as all the given options are in the same format. We used basic trigonometry for conversion. One should not confuse it to be a given parameter.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

