Answer
Verified
502.8k+ views
Hint: In this question first convert inner and outer diameter into radius then apply the formula of volume of cylindrical tube having inner and outer radius, later on multiply this volume by given mass, so use these concepts to reach the solution of the question.
Given data
Inner diameter (d) of cylindrical wood pipe is 24 cm.
Outer diameter (D) of cylindrical wood pipe is 28 cm.
The length (h) of the pipe is 35 cm.
1 $c{m^3}$ of wood has a mass of 0.6 gm.
So, inner radius (r) of the cylindrical wood pipe $ = \dfrac{{{\text{inner diameter}}}}{2} = \dfrac{d}{2} = \dfrac{{24}}{2} = 12$ cm.
So, outer radius (R) of the cylindrical wood pipe $ = \dfrac{{{\text{outer diameter}}}}{2} = \dfrac{D}{2} = \dfrac{{28}}{2} = 14$ cm.
Now we all know that the volume (V) of the cylindrical tube having inner and outer radius is given as
$ \Rightarrow V = \pi \left( {{R^2} - {r^2}} \right)h$.
Now, substitute the values in above equation we have
$V = \pi \left( {{{14}^2} - {{12}^2}} \right)35$
As we know that $\left[ {\pi = \dfrac{{22}}{7}} \right]$, so apply this in above equation we have
$V = \dfrac{{22}}{7}\left( {{{14}^2} - {{12}^2}} \right)35 = \left( {22 \times 5} \right)\left( {196 - 144} \right) = 110\left( {52} \right) = 5720{\text{ c}}{{\text{m}}^3}$
Now it is given that mass of 1 $c{m^3}$ wood = 0.6 gm.
Therefore mass of 5720 $c{m^3}$wooden pipe $ = 5720 \times 0.6 = 3432{\text{ gms}}$.
We can also convert this mass into kilograms (kg).
As we know $1{\text{ gm}} = \dfrac{1}{{1000}}{\text{ kg}}$, so divide by 1000 in 3432 gm we have,
Mass of wooden pipe $ = \dfrac{{3432}}{{1000}} = 3.342{\text{ kgs}}$.
So, this is the required answer.
Note: In such types of questions the key concept we have to remember is that always recall the formula of volume of cylindrical tube having inner and outer radius which is stated above, then first calculate inner and outer radius, then substitute these values in the formula and calculate the volume, than multiply this volume by given mass of 1 $c{m^3}$wood, we will get the required mass of the wood, we can also convert the mass of the wood into kilograms from grams by dividing by 1000 in the mass of the wood as above.
Given data
Inner diameter (d) of cylindrical wood pipe is 24 cm.
Outer diameter (D) of cylindrical wood pipe is 28 cm.
The length (h) of the pipe is 35 cm.
1 $c{m^3}$ of wood has a mass of 0.6 gm.
So, inner radius (r) of the cylindrical wood pipe $ = \dfrac{{{\text{inner diameter}}}}{2} = \dfrac{d}{2} = \dfrac{{24}}{2} = 12$ cm.
So, outer radius (R) of the cylindrical wood pipe $ = \dfrac{{{\text{outer diameter}}}}{2} = \dfrac{D}{2} = \dfrac{{28}}{2} = 14$ cm.
Now we all know that the volume (V) of the cylindrical tube having inner and outer radius is given as
$ \Rightarrow V = \pi \left( {{R^2} - {r^2}} \right)h$.
Now, substitute the values in above equation we have
$V = \pi \left( {{{14}^2} - {{12}^2}} \right)35$
As we know that $\left[ {\pi = \dfrac{{22}}{7}} \right]$, so apply this in above equation we have
$V = \dfrac{{22}}{7}\left( {{{14}^2} - {{12}^2}} \right)35 = \left( {22 \times 5} \right)\left( {196 - 144} \right) = 110\left( {52} \right) = 5720{\text{ c}}{{\text{m}}^3}$
Now it is given that mass of 1 $c{m^3}$ wood = 0.6 gm.
Therefore mass of 5720 $c{m^3}$wooden pipe $ = 5720 \times 0.6 = 3432{\text{ gms}}$.
We can also convert this mass into kilograms (kg).
As we know $1{\text{ gm}} = \dfrac{1}{{1000}}{\text{ kg}}$, so divide by 1000 in 3432 gm we have,
Mass of wooden pipe $ = \dfrac{{3432}}{{1000}} = 3.342{\text{ kgs}}$.
So, this is the required answer.
Note: In such types of questions the key concept we have to remember is that always recall the formula of volume of cylindrical tube having inner and outer radius which is stated above, then first calculate inner and outer radius, then substitute these values in the formula and calculate the volume, than multiply this volume by given mass of 1 $c{m^3}$wood, we will get the required mass of the wood, we can also convert the mass of the wood into kilograms from grams by dividing by 1000 in the mass of the wood as above.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
Who was the founder of Anushilan Samiti A Satish Chandra class 10 social science CBSE
A particle executes SHM with time period T and amplitude class 10 physics CBSE
10 examples of evaporation in daily life with explanations
What is the full form of POSCO class 10 social science CBSE
Discuss why the colonial government in India brought class 10 social science CBSE
On the outline map of India mark the following appropriately class 10 social science. CBSE