Answer
Verified
458.7k+ views
Hint: In order to solve this problem, with the help of the properties of the equilateral triangle, we need to identify the right-angle triangle and we can then solve the problem with the help of the trigonometric ratio. The trigonometric ratio used in this question is $\sin x=\dfrac{\text{opposite side}}{\text{hypotenuse}}$ .
Complete step-by-step solution:
In this problem, we are given an equilateral triangle.
And we need to find the length of the median.
We are given the radius of the inscribed circle.
We can understand it better.
We can see that length of OE is 3 cm.
We need to find the length of CO.
As all the sides of the equilateral triangle are equal, we can say that CO = OA by symmetry.
WE know that all the angles in an equilateral triangle are ${{60}^{\circ }}$.
In an equilateral triangle, the segment AO acts like an angle bisector, so,
$\angle OAE=\dfrac{60}{2} = {{30}^{\circ }}$
Now, let's consider the triangle OAE.
CE acts like a median, perpendicular bisector, and an angle bisector in an equilateral triangle.
So $\angle OEA={{90}^{\circ }}$
We know that the sum of all angles in a triangle is ${{180}^{\circ }}$.
So, $\angle A+\angle E+\angle O={{180}^{\circ }}$
Solving for $\angle O$ we get,
$\begin{align}
& 30+90+\angle O={{180}^{\circ }} \\
& \angle O={{60}^{\circ }} \\
\end{align}$
Therefore, now we can use the trigonometric ratios.
$\sin x=\dfrac{\text{opposite side}}{\text{hypotenuse}}$
Substituting we get,
$\sin 30=\dfrac{OE}{OA}$
Solving for OA we get,
$\begin{align}
& \dfrac{1}{2}=\dfrac{3}{OA} \\
& OA=3\times 2=6 \\
\end{align}$
Therefore, the length of OA = OC = 6cm.
We need to find the length of CE which is CO + OE.
Substituting we get,
CE = CO + OE = 6 + 3 = 9 cm.
Hence, the correct option is (d).
Note: In this problem, we can directly use the theorem that the centroid dives the median in the ratio of 2: 1. So we can directly get the value of OA = 3 x 2 = 6cm. In this calculation, we need to be careful of which side is twice of which side.
Complete step-by-step solution:
In this problem, we are given an equilateral triangle.
And we need to find the length of the median.
We are given the radius of the inscribed circle.
We can understand it better.
We can see that length of OE is 3 cm.
We need to find the length of CO.
As all the sides of the equilateral triangle are equal, we can say that CO = OA by symmetry.
WE know that all the angles in an equilateral triangle are ${{60}^{\circ }}$.
In an equilateral triangle, the segment AO acts like an angle bisector, so,
$\angle OAE=\dfrac{60}{2} = {{30}^{\circ }}$
Now, let's consider the triangle OAE.
CE acts like a median, perpendicular bisector, and an angle bisector in an equilateral triangle.
So $\angle OEA={{90}^{\circ }}$
We know that the sum of all angles in a triangle is ${{180}^{\circ }}$.
So, $\angle A+\angle E+\angle O={{180}^{\circ }}$
Solving for $\angle O$ we get,
$\begin{align}
& 30+90+\angle O={{180}^{\circ }} \\
& \angle O={{60}^{\circ }} \\
\end{align}$
Therefore, now we can use the trigonometric ratios.
$\sin x=\dfrac{\text{opposite side}}{\text{hypotenuse}}$
Substituting we get,
$\sin 30=\dfrac{OE}{OA}$
Solving for OA we get,
$\begin{align}
& \dfrac{1}{2}=\dfrac{3}{OA} \\
& OA=3\times 2=6 \\
\end{align}$
Therefore, the length of OA = OC = 6cm.
We need to find the length of CE which is CO + OE.
Substituting we get,
CE = CO + OE = 6 + 3 = 9 cm.
Hence, the correct option is (d).
Note: In this problem, we can directly use the theorem that the centroid dives the median in the ratio of 2: 1. So we can directly get the value of OA = 3 x 2 = 6cm. In this calculation, we need to be careful of which side is twice of which side.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Find the value of the expression given below sin 30circ class 11 maths CBSE
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
What is BLO What is the full form of BLO class 8 social science CBSE