
The integral is equal to
Answer
531k+ views
Hint- Here, we will be using integration by substitution method.
Let the given integral be
In the above integral, let us take common from the numerator also.
Now let us cancel out from the numerator with the in the denominator, we get
In order to solve the above integral, we will use integration by substitution method.
Put
Let us differentiate equation (1) with respect to both sides, we get
Clearly, we can see that after differentiating the assumed function we are getting the numerator of the integral that we are supposed to find.
Using equation (2) and (3) in equation (1), the integral becomes
where is a constant of integration.
Now substitute the value of back in terms of using equation (2), we get
Therefore,
Hence, option A is correct.
Note- In this problem, we have finally converted the integral in a form where the differentiation of the denominator function gives the numerator function and then by putting the denominator function as another variable, the given integral is solved.
Let the given integral be
In the above integral, let us take
Now let us cancel out
In order to solve the above integral, we will use integration by substitution method.
Put
Let us differentiate equation (1) with respect to
Clearly, we can see that after differentiating the assumed function we are getting the numerator of the integral that we are supposed to find.
Using equation (2) and (3) in equation (1), the integral becomes
Now substitute the value of
Therefore,
Hence, option A is correct.
Note- In this problem, we have finally converted the integral in a form where the differentiation of the denominator function gives the numerator function and then by putting the denominator function as another variable, the given integral is solved.
Latest Vedantu courses for you
Grade 6 | CBSE | SCHOOL | English
Vedantu 6 Pro Course (2025-26)
School Full course for CBSE students
₹45,300 per year
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

What are the major means of transport Explain each class 12 social science CBSE

Why is the cell called the structural and functional class 12 biology CBSE
