Answer
Verified
468.3k+ views
Hint: First of all we will take the given equation and break it in two parts by opening the bracket with integration symbols in each. Let these two terms as${I_1}\& {I_2}$. After that solve any one term and integrate with respect to $x$, then put this value in the original equation, thus we will get the answer, and add an integrating constant c with the answer.
Complete step-by-step answer:
We have to integrate the given term i.e.:
$\int {{e^x}\left( {\sin x + \cos x} \right)dx} $
Now we can write the given term as:
By separate both functions:
$ \Rightarrow \int {{e^x}\sin xdx + } \int {{e^x}\cos xdx} .........\left( 1 \right)$
Let the first term in equation $\left( 1 \right)$ is ${I_1}$ and second term is ${I_2}$
Where:
${I_1} = $ \[\int {{e^x}\sin xdx} \]\[\]
\[
{I_2} = \int {{e^x}\cos xdx} \\
\\
\]
Now differentiate the term ${I_2}$ with respect to $x$
By using the $uv$ rule of integration:
$dx = d\left( {uv} \right)dx = udvdx + vdudx$
We will apply this rule and integrate it:
\[
{I_2} = \int {{e^x}\cos xdx} \\
\Rightarrow {I_2} = {e^x}\int {\cos xdx - \int {\left( {\dfrac{d}{{dx}}\left( {{e^x}} \right).\int {\cos x} } \right)} } dx \\
\Rightarrow {I_2} = {e^x}\sin x - \int {{e^x}} \sin xdx \\
\\
\]
Put the value of ${I_2}$in term${I_1}$
Thus we get:
\[
{I_1} = \int {{e^x}\sin xdx + {e^x}\sin x - \int {{e^x}\sin xdx} } \\
\Rightarrow {e^x}\sin x + c \\
\\
\]
Where c is integrating constant.
Hence the correct answer is option B.
Note: For the given question we have to remember that to integrate the given equation we have to remember that to break the equation in two integrations like $\int {{e^x}\sin xdx + } \int {{e^x}\cos xdx} $
called as ${I_1}\& {I_2}$ then solve ${I_2}$ part of the equation and put this value in equation $1$ and add an integrating constant c with this and this is our answer.
Complete step-by-step answer:
We have to integrate the given term i.e.:
$\int {{e^x}\left( {\sin x + \cos x} \right)dx} $
Now we can write the given term as:
By separate both functions:
$ \Rightarrow \int {{e^x}\sin xdx + } \int {{e^x}\cos xdx} .........\left( 1 \right)$
Let the first term in equation $\left( 1 \right)$ is ${I_1}$ and second term is ${I_2}$
Where:
${I_1} = $ \[\int {{e^x}\sin xdx} \]\[\]
\[
{I_2} = \int {{e^x}\cos xdx} \\
\\
\]
Now differentiate the term ${I_2}$ with respect to $x$
By using the $uv$ rule of integration:
$dx = d\left( {uv} \right)dx = udvdx + vdudx$
We will apply this rule and integrate it:
\[
{I_2} = \int {{e^x}\cos xdx} \\
\Rightarrow {I_2} = {e^x}\int {\cos xdx - \int {\left( {\dfrac{d}{{dx}}\left( {{e^x}} \right).\int {\cos x} } \right)} } dx \\
\Rightarrow {I_2} = {e^x}\sin x - \int {{e^x}} \sin xdx \\
\\
\]
Put the value of ${I_2}$in term${I_1}$
Thus we get:
\[
{I_1} = \int {{e^x}\sin xdx + {e^x}\sin x - \int {{e^x}\sin xdx} } \\
\Rightarrow {e^x}\sin x + c \\
\\
\]
Where c is integrating constant.
Hence the correct answer is option B.
Note: For the given question we have to remember that to integrate the given equation we have to remember that to break the equation in two integrations like $\int {{e^x}\sin xdx + } \int {{e^x}\cos xdx} $
called as ${I_1}\& {I_2}$ then solve ${I_2}$ part of the equation and put this value in equation $1$ and add an integrating constant c with this and this is our answer.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE