The intrinsic conductivity of germanium at \[{{27}^{\text{o}}}\text{C}\] is \[2.13\text{ mho/m}\] and mobilities of electrons and holes are \[\text{0}\text{.38}\] and \[\text{0}\text{.18 }{{\text{m}}^{2}}\text{/Vs}\] respectively. To find the density of charge carriers.
Answer
Verified
472.5k+ views
Hint: In intrinsic semiconductors, electron concentration is equal to the hole concentration.
Formula used:
For intrinsic semiconductor, the electrical conductivity \[\sigma \] is given by
\[\sigma =(ne{{\mu }_{e}}+pe{{\mu }_{h}})\]
Where \[{{\mu }_{e}}\] and \[{{\mu }_{h}}\] denote the mobilities of electrons and holes respectively; n and p is the number of electrons and holes in the semiconductor, and e is the charge of an electron or a hole.
In intrinsic semiconductors, electron concentration is equal to the hole concentration,
So, \[n=p={{n}_{i}}\],
Thus,
\[\sigma ={{n}_{i}}e({{\mu }_{e}}+{{\mu }_{h}})\]
Where \[{{n}_{i}}\] denotes the density of charge carriers.
The density of charge carriers is
\[{{n}_{i}}=\dfrac{\sigma }{e({{\mu }_{e}}+{{\mu }_{h}})}\]
Complete step by step solution:
The intrinsic conductivity of germanium at \[{{27}^{\text{o}}}\text{C}\],\[\sigma =2.13\text{ mho/m}\]
Mobility of electrons, \[{{\mu }_{e}}=\text{0}\text{.38 }{{\text{m}}^{2}}\text{/Vs}\]
Mobility of holes, \[{{\mu }_{h}}=\text{0}\text{.18 }{{\text{m}}^{2}}\text{/Vs}\]
Charge on an electron/hole, \[e=\text{1}\text{.6}\times \text{1}{{\text{0}}^{-19}}\text{ C}\]
Substituting the values in the formula:
\[
{{n}_{i}}=\dfrac{\sigma }{e({{\mu }_{e}}+{{\mu }_{h}})} \\
{{n}_{i}}=\dfrac{2.13\text{ mho/m}}{(1.6\times {{10}^{-19}}\text{ C)}(0.38\text{ }{{\text{m}}^{2}}/\text{Vs}+0.18\text{ }{{\text{m}}^{2}}/\text{Vs})} \\
{{n}_{i}}=\dfrac{2.13\text{ mho/m}}{(1.6\times {{10}^{-19}}\text{ C)}(0.56{{\text{m}}^{2}}/\text{Vs})} \\
{{n}_{i}}=\dfrac{2.13\text{ mho/m}}{(8.96\times {{10}^{-20}}\text{ }{{\text{m}}^{2}}/\text{ohm})} \\
{{n}_{i}}=2.37\times {{10}^{19}}/{{\text{m}}^{3}} \\
\]
The density of charge carriers is \[2.37\times {{10}^{19}}/{{\text{m}}^{3}}\]
Additional information:
In intrinsic semiconductors such as germanium, a valence electron breaks its covalent bond if it gets sufficient thermal energy from photons of suitable frequency and becomes free. The valency left behind serves as a hole. The hole has charge equal and opposite to that of an electron.
As the charge carriers are created due to the breaking of the covalent bond, the concentration of electrons (n) becomes equal to the concentration of holes (p), that is, \[n=p={{n}_{i}}\], where \[{{n}_{i}}\] is called the intrinsic concentration or the density of carrier charges. The electron and holes are called intrinsic charge carriers. The value of \[{{n}_{i}}\] depends on the temperature of the semiconductor.
The carrier concentration in extrinsic semiconductors depends on the donor concentration, and the electron concentration is not equal to the hole concentration.
Note: The electron and holes are called intrinsic charge carriers. The value of \[{{n}_{i}}\] depends on the temperature of the semiconductor, that is, the density of charge carriers is \[2.37\times {{10}^{19}}/{{\text{m}}^{3}}\] only at \[{{27}^{\text{o}}}\text{C}\].
Formula used:
For intrinsic semiconductor, the electrical conductivity \[\sigma \] is given by
\[\sigma =(ne{{\mu }_{e}}+pe{{\mu }_{h}})\]
Where \[{{\mu }_{e}}\] and \[{{\mu }_{h}}\] denote the mobilities of electrons and holes respectively; n and p is the number of electrons and holes in the semiconductor, and e is the charge of an electron or a hole.
In intrinsic semiconductors, electron concentration is equal to the hole concentration,
So, \[n=p={{n}_{i}}\],
Thus,
\[\sigma ={{n}_{i}}e({{\mu }_{e}}+{{\mu }_{h}})\]
Where \[{{n}_{i}}\] denotes the density of charge carriers.
The density of charge carriers is
\[{{n}_{i}}=\dfrac{\sigma }{e({{\mu }_{e}}+{{\mu }_{h}})}\]
Complete step by step solution:
The intrinsic conductivity of germanium at \[{{27}^{\text{o}}}\text{C}\],\[\sigma =2.13\text{ mho/m}\]
Mobility of electrons, \[{{\mu }_{e}}=\text{0}\text{.38 }{{\text{m}}^{2}}\text{/Vs}\]
Mobility of holes, \[{{\mu }_{h}}=\text{0}\text{.18 }{{\text{m}}^{2}}\text{/Vs}\]
Charge on an electron/hole, \[e=\text{1}\text{.6}\times \text{1}{{\text{0}}^{-19}}\text{ C}\]
Substituting the values in the formula:
\[
{{n}_{i}}=\dfrac{\sigma }{e({{\mu }_{e}}+{{\mu }_{h}})} \\
{{n}_{i}}=\dfrac{2.13\text{ mho/m}}{(1.6\times {{10}^{-19}}\text{ C)}(0.38\text{ }{{\text{m}}^{2}}/\text{Vs}+0.18\text{ }{{\text{m}}^{2}}/\text{Vs})} \\
{{n}_{i}}=\dfrac{2.13\text{ mho/m}}{(1.6\times {{10}^{-19}}\text{ C)}(0.56{{\text{m}}^{2}}/\text{Vs})} \\
{{n}_{i}}=\dfrac{2.13\text{ mho/m}}{(8.96\times {{10}^{-20}}\text{ }{{\text{m}}^{2}}/\text{ohm})} \\
{{n}_{i}}=2.37\times {{10}^{19}}/{{\text{m}}^{3}} \\
\]
The density of charge carriers is \[2.37\times {{10}^{19}}/{{\text{m}}^{3}}\]
Additional information:
In intrinsic semiconductors such as germanium, a valence electron breaks its covalent bond if it gets sufficient thermal energy from photons of suitable frequency and becomes free. The valency left behind serves as a hole. The hole has charge equal and opposite to that of an electron.
As the charge carriers are created due to the breaking of the covalent bond, the concentration of electrons (n) becomes equal to the concentration of holes (p), that is, \[n=p={{n}_{i}}\], where \[{{n}_{i}}\] is called the intrinsic concentration or the density of carrier charges. The electron and holes are called intrinsic charge carriers. The value of \[{{n}_{i}}\] depends on the temperature of the semiconductor.
The carrier concentration in extrinsic semiconductors depends on the donor concentration, and the electron concentration is not equal to the hole concentration.
Note: The electron and holes are called intrinsic charge carriers. The value of \[{{n}_{i}}\] depends on the temperature of the semiconductor, that is, the density of charge carriers is \[2.37\times {{10}^{19}}/{{\text{m}}^{3}}\] only at \[{{27}^{\text{o}}}\text{C}\].
Recently Updated Pages
Using the following information to help you answer class 12 chemistry CBSE
Basicity of sulphurous acid and sulphuric acid are
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Draw a labelled sketch of the human eye class 12 physics CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What is a transformer Explain the principle construction class 12 physics CBSE
What are the major means of transport Explain each class 12 social science CBSE