Answer
Verified
453k+ views
Hint: In intrinsic semiconductors, electron concentration is equal to the hole concentration.
Formula used:
For intrinsic semiconductor, the electrical conductivity \[\sigma \] is given by
\[\sigma =(ne{{\mu }_{e}}+pe{{\mu }_{h}})\]
Where \[{{\mu }_{e}}\] and \[{{\mu }_{h}}\] denote the mobilities of electrons and holes respectively; n and p is the number of electrons and holes in the semiconductor, and e is the charge of an electron or a hole.
In intrinsic semiconductors, electron concentration is equal to the hole concentration,
So, \[n=p={{n}_{i}}\],
Thus,
\[\sigma ={{n}_{i}}e({{\mu }_{e}}+{{\mu }_{h}})\]
Where \[{{n}_{i}}\] denotes the density of charge carriers.
The density of charge carriers is
\[{{n}_{i}}=\dfrac{\sigma }{e({{\mu }_{e}}+{{\mu }_{h}})}\]
Complete step by step solution:
The intrinsic conductivity of germanium at \[{{27}^{\text{o}}}\text{C}\],\[\sigma =2.13\text{ mho/m}\]
Mobility of electrons, \[{{\mu }_{e}}=\text{0}\text{.38 }{{\text{m}}^{2}}\text{/Vs}\]
Mobility of holes, \[{{\mu }_{h}}=\text{0}\text{.18 }{{\text{m}}^{2}}\text{/Vs}\]
Charge on an electron/hole, \[e=\text{1}\text{.6}\times \text{1}{{\text{0}}^{-19}}\text{ C}\]
Substituting the values in the formula:
\[
{{n}_{i}}=\dfrac{\sigma }{e({{\mu }_{e}}+{{\mu }_{h}})} \\
{{n}_{i}}=\dfrac{2.13\text{ mho/m}}{(1.6\times {{10}^{-19}}\text{ C)}(0.38\text{ }{{\text{m}}^{2}}/\text{Vs}+0.18\text{ }{{\text{m}}^{2}}/\text{Vs})} \\
{{n}_{i}}=\dfrac{2.13\text{ mho/m}}{(1.6\times {{10}^{-19}}\text{ C)}(0.56{{\text{m}}^{2}}/\text{Vs})} \\
{{n}_{i}}=\dfrac{2.13\text{ mho/m}}{(8.96\times {{10}^{-20}}\text{ }{{\text{m}}^{2}}/\text{ohm})} \\
{{n}_{i}}=2.37\times {{10}^{19}}/{{\text{m}}^{3}} \\
\]
The density of charge carriers is \[2.37\times {{10}^{19}}/{{\text{m}}^{3}}\]
Additional information:
In intrinsic semiconductors such as germanium, a valence electron breaks its covalent bond if it gets sufficient thermal energy from photons of suitable frequency and becomes free. The valency left behind serves as a hole. The hole has charge equal and opposite to that of an electron.
As the charge carriers are created due to the breaking of the covalent bond, the concentration of electrons (n) becomes equal to the concentration of holes (p), that is, \[n=p={{n}_{i}}\], where \[{{n}_{i}}\] is called the intrinsic concentration or the density of carrier charges. The electron and holes are called intrinsic charge carriers. The value of \[{{n}_{i}}\] depends on the temperature of the semiconductor.
The carrier concentration in extrinsic semiconductors depends on the donor concentration, and the electron concentration is not equal to the hole concentration.
Note: The electron and holes are called intrinsic charge carriers. The value of \[{{n}_{i}}\] depends on the temperature of the semiconductor, that is, the density of charge carriers is \[2.37\times {{10}^{19}}/{{\text{m}}^{3}}\] only at \[{{27}^{\text{o}}}\text{C}\].
Formula used:
For intrinsic semiconductor, the electrical conductivity \[\sigma \] is given by
\[\sigma =(ne{{\mu }_{e}}+pe{{\mu }_{h}})\]
Where \[{{\mu }_{e}}\] and \[{{\mu }_{h}}\] denote the mobilities of electrons and holes respectively; n and p is the number of electrons and holes in the semiconductor, and e is the charge of an electron or a hole.
In intrinsic semiconductors, electron concentration is equal to the hole concentration,
So, \[n=p={{n}_{i}}\],
Thus,
\[\sigma ={{n}_{i}}e({{\mu }_{e}}+{{\mu }_{h}})\]
Where \[{{n}_{i}}\] denotes the density of charge carriers.
The density of charge carriers is
\[{{n}_{i}}=\dfrac{\sigma }{e({{\mu }_{e}}+{{\mu }_{h}})}\]
Complete step by step solution:
The intrinsic conductivity of germanium at \[{{27}^{\text{o}}}\text{C}\],\[\sigma =2.13\text{ mho/m}\]
Mobility of electrons, \[{{\mu }_{e}}=\text{0}\text{.38 }{{\text{m}}^{2}}\text{/Vs}\]
Mobility of holes, \[{{\mu }_{h}}=\text{0}\text{.18 }{{\text{m}}^{2}}\text{/Vs}\]
Charge on an electron/hole, \[e=\text{1}\text{.6}\times \text{1}{{\text{0}}^{-19}}\text{ C}\]
Substituting the values in the formula:
\[
{{n}_{i}}=\dfrac{\sigma }{e({{\mu }_{e}}+{{\mu }_{h}})} \\
{{n}_{i}}=\dfrac{2.13\text{ mho/m}}{(1.6\times {{10}^{-19}}\text{ C)}(0.38\text{ }{{\text{m}}^{2}}/\text{Vs}+0.18\text{ }{{\text{m}}^{2}}/\text{Vs})} \\
{{n}_{i}}=\dfrac{2.13\text{ mho/m}}{(1.6\times {{10}^{-19}}\text{ C)}(0.56{{\text{m}}^{2}}/\text{Vs})} \\
{{n}_{i}}=\dfrac{2.13\text{ mho/m}}{(8.96\times {{10}^{-20}}\text{ }{{\text{m}}^{2}}/\text{ohm})} \\
{{n}_{i}}=2.37\times {{10}^{19}}/{{\text{m}}^{3}} \\
\]
The density of charge carriers is \[2.37\times {{10}^{19}}/{{\text{m}}^{3}}\]
Additional information:
In intrinsic semiconductors such as germanium, a valence electron breaks its covalent bond if it gets sufficient thermal energy from photons of suitable frequency and becomes free. The valency left behind serves as a hole. The hole has charge equal and opposite to that of an electron.
As the charge carriers are created due to the breaking of the covalent bond, the concentration of electrons (n) becomes equal to the concentration of holes (p), that is, \[n=p={{n}_{i}}\], where \[{{n}_{i}}\] is called the intrinsic concentration or the density of carrier charges. The electron and holes are called intrinsic charge carriers. The value of \[{{n}_{i}}\] depends on the temperature of the semiconductor.
The carrier concentration in extrinsic semiconductors depends on the donor concentration, and the electron concentration is not equal to the hole concentration.
Note: The electron and holes are called intrinsic charge carriers. The value of \[{{n}_{i}}\] depends on the temperature of the semiconductor, that is, the density of charge carriers is \[2.37\times {{10}^{19}}/{{\text{m}}^{3}}\] only at \[{{27}^{\text{o}}}\text{C}\].
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE