Answer
Verified
468.9k+ views
Hint: We will first consider the given expression that is \[{7^{300}}\]. Then we will do the expansion of 7 in the first few terms and only consider the units digit and after the expansion of 4 to 5 terms we will see that the same pattern of units digit will be started so, as 300 is divisible by 4, we will check the unit digit at fourth term and that is the required answer.
Complete step by step answer:
We will first consider the expression given in the question that is \[{7^{300}}\].
Now, we will start expanding the terms of 7 till few terms,
Thus, we get,
\[
{7^1} \to 7 \\
{7^2} \to 9 \\
{7^3} \to 3 \\
{7^4} \to 1 \\
{7^5} \to 7 \\
{7^6} \to 9 \\
\]
As we can see that terms have started repeating itself after 4 terms which implies that the trend repeats itself in multiples of 4.
Now, as we have to find the unit digit of \[{7^{300}}\] we will check whether the 300 is divisible by 4 or not because as the pattern gets repeated after 4 terms so, that’s why we will divide 300 by 4.
Thus, we get that 300 is divisible by 4 and the unit digit at 4th term is 1.
Thus, we can conclude that the unit digit of \[{7^{300}}\] is 1.
Hence, option C is correct.
Note: As we can not expand the terms till 300 terms so, we have determined that the expansion follows the pattern after a few terms. The unit digit of \[{7^2} = 49\] is 9 as it lies in the unit place and similarly, we have found the other unit digits. As the pattern repeats after 4 terms that is why we have to check whether 300 is divisible by 4 or not. open the powers of 7 properly. Have to check from where the pattern starts repeating.
Complete step by step answer:
We will first consider the expression given in the question that is \[{7^{300}}\].
Now, we will start expanding the terms of 7 till few terms,
Thus, we get,
\[
{7^1} \to 7 \\
{7^2} \to 9 \\
{7^3} \to 3 \\
{7^4} \to 1 \\
{7^5} \to 7 \\
{7^6} \to 9 \\
\]
As we can see that terms have started repeating itself after 4 terms which implies that the trend repeats itself in multiples of 4.
Now, as we have to find the unit digit of \[{7^{300}}\] we will check whether the 300 is divisible by 4 or not because as the pattern gets repeated after 4 terms so, that’s why we will divide 300 by 4.
Thus, we get that 300 is divisible by 4 and the unit digit at 4th term is 1.
Thus, we can conclude that the unit digit of \[{7^{300}}\] is 1.
Hence, option C is correct.
Note: As we can not expand the terms till 300 terms so, we have determined that the expansion follows the pattern after a few terms. The unit digit of \[{7^2} = 49\] is 9 as it lies in the unit place and similarly, we have found the other unit digits. As the pattern repeats after 4 terms that is why we have to check whether 300 is divisible by 4 or not. open the powers of 7 properly. Have to check from where the pattern starts repeating.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE