Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

The length, breadth and height of c cuboid are in the ratio 5:3:2. If the volume is $35.937{{m}^{3}}$, find its dimensions. Also find the surface area of the cuboid.

seo-qna
SearchIcon
Answer
VerifiedVerified
488.1k+ views
Hint: Assume a proportionality constant (say x) for the given ratio of length, breadth and height. Calculate length, breadth and height in terms of x. then use the formula $''Volume=length\times breadth\times height''$ to find volume of the cuboid in terms of x and equate it with given volume to obtain equation in x and finally solve the equation to get x and using x find dimension of cuboid. Find the total surface area of the cuboid using formula $2\left( lb+bh+lh \right)$ where l=length, b=breadth and h=height.

Complete step-by-step answer:


We have to find the dimension of the cuboid whose ratio of length, breadth and height is given.

Given ratio- length: breadth: height=5:3:2

Let the proportionality constant to be x

So, length of the cuboid will be 5x and

Breadth of the cuboid will be 3x and

Height of the cuboid will be 2x.

seo images

We know that volume of the cuboid= $length\times breadth\times height$

By putting length=5x, breadth=3x and height=2x, we will get

Volume of this cuboid= $\left( 5x \right)\left( 3x \right)\left( 2x \right)$

But, according to the question, the volume of this cuboid = $35.937{{m}^{3}}$.

So,
$\begin{align}
  & \left( 5x \right)\left( 3x \right)\left( 2x \right)=35.937{{m}^{3}} \\
 & \Rightarrow 30{{x}^{3}}=35.937{{m}^{3}} \\
\end{align}$

On dividing both sides by 30, we will get-

\[\begin{align}

  & \Rightarrow {{x}^{3}}=\dfrac{35.937}{30} \\

 & \Rightarrow {{x}^{3}}=1.1979 \\

\end{align}\]

On taking cube root of both sides of equation, we will get-

$\begin{align}

  & \Rightarrow x=\sqrt{1,1979} \\

 & \Rightarrow x-1.1062m \\

\end{align}$

So, length$=5x=5\times \left( 1.1062 \right)=5.531m$

     Breadth$=3x=3\times \left( 1.1062 \right)=3.3186m$

     Height$=2x=2\times \left( 1.1062 \right)=2.2124m$

On putting the above obtained value of length, breadth and height in the formula of volume

We will get-

Volume of the cuboid=$\left( 5.531m \right)\left( 3.3186m \right)\left( 2.2124m \right)$

                                        = $40.6089{{m}^{3}}$

Now, let us find out the total surface area of the cuboid.

We know that formula for TSA of cuboid= 2(lb+bh+lh)

Where l= length

                b=breadth

                h=height

$\Rightarrow $TSA of cuboid

\[\begin{align}

  & =2+\left[ \left( 5.531 \right)\left( 3.3186 \right)+\left( .3186 \right)\left( 2.2124 \right)+\left( 5.531 \right)\left( 2.2124 \right) \right] \\

 & =2\left[ 18.355+7.342+12.237 \right] \\

 & =2\left[ 37.334 \right] \\

 & =2\times 37.334 \\

 & =75.862{{m}^{2}} \\

\end{align}\]

Hence, the required volume of the cuboid is $40.6080{{m}^{3}}$ and total surface area of the cuboid is $75.868{{m}^{2}}$.

Note: We have used the formula for TSA of cuboid= 2(lb+bh+lh). We can derive the formula in the following way-
 Total surface area= sum of area of all 6 faces
 = (area of face 1) + (area of face 2) + (area of face 3) + (area of face 4) + (area of face 5) + (area of face 6)
$\Rightarrow $Total surface area

$=\left[ \begin{align}

  & \left( length\,of\,face\,\,1 \right)\times \left( Breadth\,\,of\,face\,1 \right)+\left( length\,of\,face\,2 \right)\times \left( breadth\,of\,face\,2 \right)+............+ \\

 & \left( length\,of\,face\,6 \right)\times \left( breadth\,of\,face\,6 \right) \\

\end{align} \right]$

$\begin{align}

  & \Rightarrow TSA=\left[ \left( b\times h \right)+\left( b\times h \right)+\left( l\times b \right)+\left( l\times b \right)+\left( l\times h \right)+\left( l\times h \right) \right] \\

 & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\left[ 2bh+2lb+2lh \right] \\

\end{align}$

$\Rightarrow TSA=2\left( lb+bh+lh \right)$