The length, breadth and height of cuboid are in the ratio 1:2:3. If they are increased by 100%, 200% and 200% respectively, then, as compared to the original volume the increase in the volume of the cuboid will be:
A. 5 times
B. 18 times
C. 12 times
D. 17 times
Answer
Verified
496.5k+ views
Hint: Take the proportionate as ‘x’. thus get the length, breadth and height of the original cuboid. Then find l,b & h, new, increased side. Then find the volume of the original cuboid and new increased volume of the cuboid. Subtract them to find the increases in volume of cuboid.
Complete step-by-step answer:
We have been given a cuboid whose length, breadth and height in the ratio 1:2:3. Now let us take ‘x’ as the side.
$\therefore $ The length of cuboid $=1.x=x$ .
The breadth of cuboid $=2.x=2x$ .
The height of cuboid $=3.x=3x$ .
Now their dimensions of the cuboid are increased by 100%, 200% and 200%. i.e. the length of cuboid is increased by 100%, the breadth is increased by 200% and the height is increased by 200%.
Hence, the new dimensions of the cuboid are
Length $=x+\dfrac{100}{100}x=x+x=2x$ .
Breadth $=2x+\dfrac{200}{100}\times 2x=2x+4x=6x$ .
Height $=3x+\dfrac{200}{100}\times 3x=3x+6x=9x$ .
Hence, the original dimensions of cuboid $=x,2x,3x$ .
New dimensions of the cuboid $=2x,6x,9x$ .
We know that volume of a cuboid $=length\times breadth\times height$ .
$\therefore $ Original volume of cuboid $=x\times 2x\times 3x=6{{x}^{3}}$
Now increased volume of cuboid $=2x\times 6x\times 9x=108{{x}^{3}}$
Thus the increase in volume = New increased volume – original volume of cuboid
$=108{{x}^{3}}-6{{x}^{3}}=102{{x}^{3}}$
Thus we can write the increase in volume as,
$102{{x}^{3}}=17\times 6{{x}^{3}}$
We know that $6{{x}^{3}}$ is the original value.
$\therefore $ Increase in volume $=17\times \text{ Original volume}$
Thus, when comparing the original volume the increase in the volume of cuboid is 17 times.
$\therefore $ Option (D) is the correct answer.
Note: It is said length, breadth and height are in ratio. Don’t take different variables for the 3 quantities as l,b,h etc. take as they are in proportionate as ‘x’. putting 3 variables is complicated and you won't get the answer.
Complete step-by-step answer:
We have been given a cuboid whose length, breadth and height in the ratio 1:2:3. Now let us take ‘x’ as the side.
$\therefore $ The length of cuboid $=1.x=x$ .
The breadth of cuboid $=2.x=2x$ .
The height of cuboid $=3.x=3x$ .
Now their dimensions of the cuboid are increased by 100%, 200% and 200%. i.e. the length of cuboid is increased by 100%, the breadth is increased by 200% and the height is increased by 200%.
Hence, the new dimensions of the cuboid are
Length $=x+\dfrac{100}{100}x=x+x=2x$ .
Breadth $=2x+\dfrac{200}{100}\times 2x=2x+4x=6x$ .
Height $=3x+\dfrac{200}{100}\times 3x=3x+6x=9x$ .
Hence, the original dimensions of cuboid $=x,2x,3x$ .
New dimensions of the cuboid $=2x,6x,9x$ .
We know that volume of a cuboid $=length\times breadth\times height$ .
$\therefore $ Original volume of cuboid $=x\times 2x\times 3x=6{{x}^{3}}$
Now increased volume of cuboid $=2x\times 6x\times 9x=108{{x}^{3}}$
Thus the increase in volume = New increased volume – original volume of cuboid
$=108{{x}^{3}}-6{{x}^{3}}=102{{x}^{3}}$
Thus we can write the increase in volume as,
$102{{x}^{3}}=17\times 6{{x}^{3}}$
We know that $6{{x}^{3}}$ is the original value.
$\therefore $ Increase in volume $=17\times \text{ Original volume}$
Thus, when comparing the original volume the increase in the volume of cuboid is 17 times.
$\therefore $ Option (D) is the correct answer.
Note: It is said length, breadth and height are in ratio. Don’t take different variables for the 3 quantities as l,b,h etc. take as they are in proportionate as ‘x’. putting 3 variables is complicated and you won't get the answer.
Recently Updated Pages
A uniform rod of length l and mass m is free to rotate class 10 physics CBSE
Solve the following pairs of linear equations by elimination class 10 maths CBSE
What could be the possible ones digits of the square class 10 maths CBSE
Where was the Great Bath found A Harappa B Mohenjodaro class 10 social science CBSE
PQ is a tangent to a circle with centre O at the point class 10 maths CBSE
The measures of two adjacent sides of a parallelogram class 10 maths CBSE
Trending doubts
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE
Frogs can live both on land and in water name the adaptations class 10 biology CBSE
Fill in the blank One of the students absent yesterday class 10 english CBSE
Write a letter to the Principal of your school requesting class 10 english CBSE