The length of perpendicular from the point \[(a\cos \alpha ,a\sin \alpha )\]upon the straight line \[y = x\tan \alpha + C,c > 0\]is.
A. \[a\cos \alpha \]
B. \[c{\sin ^2}x\]
C. \[c{\sec ^2}x\]
D. \[c{\cos ^2}x\]
Answer
Verified
472.8k+ views
Hint: Perpendicular distance say (d) from a given point \[P({x_1},{y_1})\]to a line \[Ax + By + c = 0\] is given as:
\[ \Rightarrow \dfrac{{|A{x_1} + B{y_1} + C|}}{{\sqrt {{A^2} + {B^2}} }}\]. Use this formula to get the answer.
Complete step-by-step answer:
The given point is P\[(a\cos \alpha ,a\sin \alpha )\].
And our equation of line is\[y = x\tan \alpha + C\].
Perpendicular distance say (d) from a given point\[P({x_1},{y_1})\]to a line \[Ax + By + c = 0\] is given as:
\[ \Rightarrow \dfrac{{|A{x_1} + B{y_1} + C|}}{{\sqrt {{A^2} + {B^2}} }}\].
\[
\Rightarrow d = \dfrac{{|\left( { - \tan \alpha } \right)(a\cos \alpha ) + (1)(a\sin \alpha ) + c|}}{{\sqrt {{{\left( { - \tan \alpha } \right)}^2} + {{(1)}^2}} }} \\
\Rightarrow d = \dfrac{{|\left( { - \dfrac{{\sin \alpha }}{{\cos \alpha }}} \right)(a\cos \alpha ) + (a\sin \alpha ) + c|}}{{\sqrt {1 + {{\tan }^2}\alpha } }} \\
\Rightarrow d = \dfrac{{|( - a\sin \alpha ) + (a\sin \alpha ) + c|}}{{\sqrt {{{\sec }^2}\alpha } }} \\
\Rightarrow d = \dfrac{c}{{\sec \alpha }} \\
\Rightarrow d = c\cos \alpha \\
\]
None of the above options is correct.
The required perpendicular distance=\[c\cos \alpha \].
Note: Working formula to solve such questions:
First simplify the equation of straight line.
Then put the points in our given straight line.
Then put the values in \[\dfrac{{|A{x_1} + B{y_1} + C|}}{{\sqrt {{A^2} + {B^2}} }}\]
Where, \[Ax + By + C = 0\] is the equation of straight line and \[({x_1},{y_1})\] are the points from which perpendicular distance is to be found.
\[ \Rightarrow \dfrac{{|A{x_1} + B{y_1} + C|}}{{\sqrt {{A^2} + {B^2}} }}\]. Use this formula to get the answer.
Complete step-by-step answer:
The given point is P\[(a\cos \alpha ,a\sin \alpha )\].
And our equation of line is\[y = x\tan \alpha + C\].
Perpendicular distance say (d) from a given point\[P({x_1},{y_1})\]to a line \[Ax + By + c = 0\] is given as:
\[ \Rightarrow \dfrac{{|A{x_1} + B{y_1} + C|}}{{\sqrt {{A^2} + {B^2}} }}\].
\[
\Rightarrow d = \dfrac{{|\left( { - \tan \alpha } \right)(a\cos \alpha ) + (1)(a\sin \alpha ) + c|}}{{\sqrt {{{\left( { - \tan \alpha } \right)}^2} + {{(1)}^2}} }} \\
\Rightarrow d = \dfrac{{|\left( { - \dfrac{{\sin \alpha }}{{\cos \alpha }}} \right)(a\cos \alpha ) + (a\sin \alpha ) + c|}}{{\sqrt {1 + {{\tan }^2}\alpha } }} \\
\Rightarrow d = \dfrac{{|( - a\sin \alpha ) + (a\sin \alpha ) + c|}}{{\sqrt {{{\sec }^2}\alpha } }} \\
\Rightarrow d = \dfrac{c}{{\sec \alpha }} \\
\Rightarrow d = c\cos \alpha \\
\]
None of the above options is correct.
The required perpendicular distance=\[c\cos \alpha \].
Note: Working formula to solve such questions:
First simplify the equation of straight line.
Then put the points in our given straight line.
Then put the values in \[\dfrac{{|A{x_1} + B{y_1} + C|}}{{\sqrt {{A^2} + {B^2}} }}\]
Where, \[Ax + By + C = 0\] is the equation of straight line and \[({x_1},{y_1})\] are the points from which perpendicular distance is to be found.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE