Answer
Verified
490.8k+ views
Hint: The length of the latus rectum of an ellipse is \[\dfrac{2{{b}^{2}}}{a}\]. Thus find the length which is \[{{\dfrac{1}{3}}^{rd}}\] to the major axis. Substitute the obtained value in the formula of eccentricity of an ellipse.
Complete Step-by-Step solution:
We know the general form of an ellipse, \[\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\].
The latus rectum of an ellipse is the chord of the chord of the ellipse through its one focus and perpendicular to the major axis.
We know the latus rectum of ellipse \[=\dfrac{2{{b}^{2}}}{a}\].
It is said that the length of the latus rectum of an ellipse is equal to \[{{\dfrac{1}{3}}^{rd}}\] of the major axis.
We know the length of the major axis of ellipse = 2a.
\[\therefore \] According to the question, \[\dfrac{2{{b}^{2}}}{a}=\dfrac{1}{3}\left( 2a \right)\].
By simplifying the above expression, we get,
\[\dfrac{{{b}^{2}}}{{{a}^{2}}}=\dfrac{1}{3}\]
Now we need to find the eccentricity.
The eccentricity of an ellipse is the ratio of the distance from the center to the foci and the distance from the center of the vertices.
The equation of eccentricity is given by,
\[{{e}^{2}}=1-\dfrac{{{b}^{2}}}{{{a}^{2}}}\]
Put, \[\dfrac{{{b}^{2}}}{{{a}^{2}}}=\dfrac{1}{3}\] in the above expression.
\[\begin{align}
& {{e}^{2}}=1-\dfrac{1}{3}=\dfrac{3-1}{3} \\
& {{e}^{2}}=\dfrac{2}{3} \\
& \therefore e=\sqrt{\dfrac{2}{3}} \\
\end{align}\]
Thus we got the eccentricity, e as \[\sqrt{\dfrac{2}{3}}\].
\[\therefore \] Option (b) is the correct answer.
Note: We know that ellipse is a closed shape structure in a two dimensional plane. Hence it covers a region in a 2D plane. So, this bounded region of the ellipse forms its area. The shape of the ellipse is different from that of the circle.
Area of ellipse = \[\pi \times \] Major axis \[\times \] Minor axis = \[\pi ab\].
Complete Step-by-Step solution:
We know the general form of an ellipse, \[\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\].
The latus rectum of an ellipse is the chord of the chord of the ellipse through its one focus and perpendicular to the major axis.
We know the latus rectum of ellipse \[=\dfrac{2{{b}^{2}}}{a}\].
It is said that the length of the latus rectum of an ellipse is equal to \[{{\dfrac{1}{3}}^{rd}}\] of the major axis.
We know the length of the major axis of ellipse = 2a.
\[\therefore \] According to the question, \[\dfrac{2{{b}^{2}}}{a}=\dfrac{1}{3}\left( 2a \right)\].
By simplifying the above expression, we get,
\[\dfrac{{{b}^{2}}}{{{a}^{2}}}=\dfrac{1}{3}\]
Now we need to find the eccentricity.
The eccentricity of an ellipse is the ratio of the distance from the center to the foci and the distance from the center of the vertices.
The equation of eccentricity is given by,
\[{{e}^{2}}=1-\dfrac{{{b}^{2}}}{{{a}^{2}}}\]
Put, \[\dfrac{{{b}^{2}}}{{{a}^{2}}}=\dfrac{1}{3}\] in the above expression.
\[\begin{align}
& {{e}^{2}}=1-\dfrac{1}{3}=\dfrac{3-1}{3} \\
& {{e}^{2}}=\dfrac{2}{3} \\
& \therefore e=\sqrt{\dfrac{2}{3}} \\
\end{align}\]
Thus we got the eccentricity, e as \[\sqrt{\dfrac{2}{3}}\].
\[\therefore \] Option (b) is the correct answer.
Note: We know that ellipse is a closed shape structure in a two dimensional plane. Hence it covers a region in a 2D plane. So, this bounded region of the ellipse forms its area. The shape of the ellipse is different from that of the circle.
Area of ellipse = \[\pi \times \] Major axis \[\times \] Minor axis = \[\pi ab\].
Recently Updated Pages
a Why did Mendel choose pea plants for his experiments class 10 biology CBSE
Two tankers contain 850 litres and 680 litres of petrol class 10 maths CBSE
Distinguish between the reserved forests and protected class 10 biology CBSE
Find the greatest number of 5 digits that will give class 10 maths CBSE
What is the difference between anaerobic aerobic respiration class 10 biology CBSE
Three bells tolls at the intervals of 9 12 15 minu-class-10-maths-CBSE
Trending doubts
Capital of the Cheras was A Madurai B Muziri C Uraiyur class 10 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
A Tesla is equivalent to a A Newton per coulomb B Newton class 9 physics CBSE
Which are the Top 10 Largest Countries of the World?
The capital of British India was transferred from Calcutta class 10 social science CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
What is spore formation class 11 biology CBSE
Queen Victoria became the Empress of India according class 7 social science CBSE
Who was the first scientist to propose a model for class 11 chemistry CBSE