
The length of the shortest face diagonal of a cuboid of dimensions is:
(a) 4 cm
(b) 5 cm
(c) 6 cm
(d) 7 cm
Answer
513.3k+ views
Hint: In this question, we first need to find the shortest face among all the faces in the cuboid. Then the diagonal of this face will be the hypotenuse which can be calculated by using the formula of diagonal of a rectangle to get the result.
Complete step-by-step answer:
Cuboid: A figure which is surrounded by six rectangular surfaces is called cuboid.
The cuboid shape has six sides called faces. Each face of a cuboid is a rectangle.
Now, let us draw the cuboid with the given dimensions in the question
As already mentioned in the question to find the diagonal of the shortest face
Now, form the given dimensions in the question let us choose the smallest rectangle possible
From,
The dimensions of the smallest rectangle possible is
Thus, the dimensions of the shortest face will be
As we already know that in a rectangle of length l and breadth b
The formula of the diagonal of a rectangle is given by
Now, on comparing the values with the above formula we get,
Let us assume the diagonal of the shortest face as d
Now, on substituting the respective values we get,
Now, on further simplification we get,
Now, this can be also written as
Hence, the correct option is (b).
Note: It is important to note that the shortest face will be the rectangle which has the least possible dimensions and area because consider any of the rectangle other than that changes the result completely.
Instead of considering it again as a rectangle and assuming some variable to get the diagonal we can directly calculate it from the dimensions we get. It is also important to note that we need to substitute the respective values because neglecting any of the terms changes the result.
Complete step-by-step answer:
Cuboid: A figure which is surrounded by six rectangular surfaces is called cuboid.
The cuboid shape has six sides called faces. Each face of a cuboid is a rectangle.
Now, let us draw the cuboid with the given dimensions in the question

As already mentioned in the question to find the diagonal of the shortest face
Now, form the given dimensions in the question let us choose the smallest rectangle possible
From,
The dimensions of the smallest rectangle possible is
Thus, the dimensions of the shortest face will be
As we already know that in a rectangle of length l and breadth b
The formula of the diagonal of a rectangle is given by
Now, on comparing the values with the above formula we get,
Let us assume the diagonal of the shortest face as d
Now, on substituting the respective values we get,
Now, on further simplification we get,
Now, this can be also written as
Hence, the correct option is (b).
Note: It is important to note that the shortest face will be the rectangle which has the least possible dimensions and area because consider any of the rectangle other than that changes the result completely.
Instead of considering it again as a rectangle and assuming some variable to get the diagonal we can directly calculate it from the dimensions we get. It is also important to note that we need to substitute the respective values because neglecting any of the terms changes the result.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Write the following in Roman numerals 25819 class 7 maths CBSE

Trending doubts
How many ounces are in 500 mL class 8 maths CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

Advantages and disadvantages of science

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

How many ten lakhs are in one crore-class-8-maths-CBSE

What led to the incident of Bloody Sunday in Russia class 8 social science CBSE
