Answer
Verified
474.3k+ views
Hint: We can obtain the number of ways the letters can be written such that 2 I’s do not occur together by calculating the number of ways the letter can be rearranged with the 2 I’s together and subtracting it from the total number of ways. The total number of ways can be found using the formula $\dfrac{{{\text{n!}}}}{{{\text{r!}}}}$ and the number of ways of arranging letters with 2 I’s together can be found by taking the 2 I’s as one letter.
Complete step-by-step answer:
First, we need to find the total number of ways the letters can be written. It is given by
$\dfrac{{{\text{n!}}}}{{{\text{r!}}}}$ where n= number of letters and r = number of repeating letters
So, the total number of ways the letters of word ’UNIVERSITY’ are written ${\text{ = }}\dfrac{{{\text{10!}}}}{{{\text{2!}}}}$
Now, we need to find the number of ways the letters can be written with the 2 I’s together. Let us consider the 2 I’s together. The other 8 letters and the 2 I ‘s can be arranged in 9! ways.
We need to find the number of ways the letters can be written such that 2 I’s do not occur together. For that we subtract the number of ways of writing 2 I’s together from the total number of ways. Thus, we get, ${\text{P = }}\dfrac{{{\text{10!}}}}{{{\text{2!}}}}{\text{ - 9!}}$
On further simplification, we get,
${\text{P = 9!}}\left( {\dfrac{{{\text{10}}}}{{\text{2}}}{\text{ - 1}}} \right){\text{ = 9!}}\left( {\dfrac{{{\text{10 - 2}}}}{{\text{2}}}} \right){{ = 4 \times 9!}}$
Hence there are 4 X 9! ways in which the letters can be written such that 2 I’s don’t occur together.
Therefore, the correct answer is option D.
Note: For finding the number of ways of arranging letters, we must consider the repeating letters and it must be used in the equation accordingly. It is a common error to skip the repeating letters. Drawing the places to be filled and visualizing can help for better understanding of the solution. The concept used here is permutations and combinations.
Complete step-by-step answer:
First, we need to find the total number of ways the letters can be written. It is given by
$\dfrac{{{\text{n!}}}}{{{\text{r!}}}}$ where n= number of letters and r = number of repeating letters
So, the total number of ways the letters of word ’UNIVERSITY’ are written ${\text{ = }}\dfrac{{{\text{10!}}}}{{{\text{2!}}}}$
Now, we need to find the number of ways the letters can be written with the 2 I’s together. Let us consider the 2 I’s together. The other 8 letters and the 2 I ‘s can be arranged in 9! ways.
We need to find the number of ways the letters can be written such that 2 I’s do not occur together. For that we subtract the number of ways of writing 2 I’s together from the total number of ways. Thus, we get, ${\text{P = }}\dfrac{{{\text{10!}}}}{{{\text{2!}}}}{\text{ - 9!}}$
On further simplification, we get,
${\text{P = 9!}}\left( {\dfrac{{{\text{10}}}}{{\text{2}}}{\text{ - 1}}} \right){\text{ = 9!}}\left( {\dfrac{{{\text{10 - 2}}}}{{\text{2}}}} \right){{ = 4 \times 9!}}$
Hence there are 4 X 9! ways in which the letters can be written such that 2 I’s don’t occur together.
Therefore, the correct answer is option D.
Note: For finding the number of ways of arranging letters, we must consider the repeating letters and it must be used in the equation accordingly. It is a common error to skip the repeating letters. Drawing the places to be filled and visualizing can help for better understanding of the solution. The concept used here is permutations and combinations.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Who was the Governor general of India at the time of class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE
10 examples of friction in our daily life