The longest wavelength of \[H{e^ + }\] in Paschen series is ’m’ then shortest wavelength of \[B{e^{3 + }}\] in Paschen series in terms of ‘m’ is:
Answer
Verified
454.8k+ views
Hint: Use Rydberg formula to calculate where the atomic number Z of helium is 2 and beryllium is 3. In the Paschen series electron transition takes place from higher energy states where n = 4,5,6,7,8…to lower energy levels where n = 3.
Complete step by step answer:
The spectral series are defined as the set of wavelengths arranged in a sequential fashion. The spectral series characterizes light or electromagnetic radiation which is emitted by energized atoms.
The spectral series contains three different series arranged in different wavelengths. The series are Lyman series, Balmer series, Paschen series.
The Rydberg formula shows the relation of the energy difference between various levels of Bohr’s model and wavelength which is absorbed by the photon or emitted by the photon.
The Rydberg formula is given as shown below.
\[\dfrac{1}{\lambda } = R{Z^2}\left( {\dfrac{1}{{n_l^2}} - \dfrac{1}{{n_h^2}}} \right)\]
Where,
\[\lambda \] is the wavelength
R is the Rydberg constant
Z is the atomic number
\[{n_l}\] is the lower energy level.
\[{n_h}\] is a higher energy level.
The Paschen series was observed in the year 1908, by a German physicist Friedrich Paschen. The Paschen series takes place when the electron transition takes place from a higher energy state where n = 4,5,6,7,8…to a lower energy level where n = 3.
Given,
The longest wavelength of \[H{e^ + }\]in Paschen series is ’m’
For \[H{e^ + }\], atomic number is 2.
Substitute the values in the equation.
\[ \Rightarrow \dfrac{1}{m} = R \times 4\left( {\dfrac{1}{9} - \dfrac{1}{{16}}} \right)\]
\[ \Rightarrow \dfrac{1}{m} = \dfrac{{7R}}{{36}}\]…….(I)
For \[B{e^{3 + }}\]
\[ \Rightarrow \dfrac{1}{{{\lambda _{B{e^ + }}}}} = R \times 16\left( {\dfrac{1}{9} - \dfrac{1}{\infty }} \right)\]
\[ \Rightarrow \dfrac{1}{{{\lambda _{B{e^ + }}}}} = \dfrac{{16R}}{9}\]…….(II)
Dividing equation (i) by (ii) as shown below.
\[ \Rightarrow \dfrac{{{\lambda _{B{e^{3 + }}}}}}{m} = \dfrac{{7 \times 9}}{{16 \times 36}}\]
\[ \Rightarrow {\lambda _{B{e^{3 + }}}} = \dfrac{7}{{64}}m\]
Note: The Rydberg formula is valid for only hydrogen and hydrogen like elements. It gives reasonable value only if the highest energy level is greater than the lowest energy level.
Complete step by step answer:
The spectral series are defined as the set of wavelengths arranged in a sequential fashion. The spectral series characterizes light or electromagnetic radiation which is emitted by energized atoms.
The spectral series contains three different series arranged in different wavelengths. The series are Lyman series, Balmer series, Paschen series.
The Rydberg formula shows the relation of the energy difference between various levels of Bohr’s model and wavelength which is absorbed by the photon or emitted by the photon.
The Rydberg formula is given as shown below.
\[\dfrac{1}{\lambda } = R{Z^2}\left( {\dfrac{1}{{n_l^2}} - \dfrac{1}{{n_h^2}}} \right)\]
Where,
\[\lambda \] is the wavelength
R is the Rydberg constant
Z is the atomic number
\[{n_l}\] is the lower energy level.
\[{n_h}\] is a higher energy level.
The Paschen series was observed in the year 1908, by a German physicist Friedrich Paschen. The Paschen series takes place when the electron transition takes place from a higher energy state where n = 4,5,6,7,8…to a lower energy level where n = 3.
Given,
The longest wavelength of \[H{e^ + }\]in Paschen series is ’m’
For \[H{e^ + }\], atomic number is 2.
Substitute the values in the equation.
\[ \Rightarrow \dfrac{1}{m} = R \times 4\left( {\dfrac{1}{9} - \dfrac{1}{{16}}} \right)\]
\[ \Rightarrow \dfrac{1}{m} = \dfrac{{7R}}{{36}}\]…….(I)
For \[B{e^{3 + }}\]
\[ \Rightarrow \dfrac{1}{{{\lambda _{B{e^ + }}}}} = R \times 16\left( {\dfrac{1}{9} - \dfrac{1}{\infty }} \right)\]
\[ \Rightarrow \dfrac{1}{{{\lambda _{B{e^ + }}}}} = \dfrac{{16R}}{9}\]…….(II)
Dividing equation (i) by (ii) as shown below.
\[ \Rightarrow \dfrac{{{\lambda _{B{e^{3 + }}}}}}{m} = \dfrac{{7 \times 9}}{{16 \times 36}}\]
\[ \Rightarrow {\lambda _{B{e^{3 + }}}} = \dfrac{7}{{64}}m\]
Note: The Rydberg formula is valid for only hydrogen and hydrogen like elements. It gives reasonable value only if the highest energy level is greater than the lowest energy level.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE