Answer
Verified
485.1k+ views
Hint: In the figure there are two current carrying elements that are the circular loop and the finite wire. Use the direct formula for magnetic field at a distance r for a circular loop and finite wire. Then find the net magnetic field at the center. This will help getting the right option.
Complete Step-by-Step solution:
As we know for an finitely long wire the magnetic field (${B_1}$) is given as
${B_1} = \dfrac{{{\mu _0}I}}{{2\pi r}}$ $wb/{m^2}$, where r is the perpendicular length from the center of the circle as we have to calculate the magnetic field at the center of the circle which is nothing but the radius of the circle as line is touching to the circle.
And for a circular loop the magnetic field (${B_2}$) is given as
${B_2} = \dfrac{{{\mu _0}I}}{{2r}}$$wb/{m^2}$, where r is the radius of the circular loop.
So the net magnetic field (B) of their combination is the difference of respective magnetic fields.
As we see that ${B_2}$ is greater than ${B_1}$ as the denominator of ${B_1}$ is larger than the denominator of ${B_2}$therefore net magnetic field is
$ \Rightarrow B = {B_2} - {B_1}$
Now substitute the values we have,
$ \Rightarrow B = \dfrac{{{\mu _0}I}}{{2r}} - \dfrac{{{\mu _0}I}}{{2\pi r}}$
Now take $\dfrac{{{\mu _0}I}}{{2\pi r}}$ as common we have,
$ \Rightarrow B = \dfrac{{{\mu _0}I}}{{2\pi r}}\left( {\pi - 1} \right)$ $wb/{m^2}$
This expression is also written as
$ \Rightarrow B = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{2I}}{r}\left( {\pi - 1} \right)$ $wb/{m^2}$
So this is the required answer.
Hence option (B) is the correct answer.
Note – It is always advisable to understand the geometry of the figure while solving problems of this kind as it helps knowing out the basic figures from which current is flowing. Current always leads to production of magnetic fields. The direct formula for magnetic fields due to basic figures need to be remembered, some of them are being mentioned above.
Complete Step-by-Step solution:
As we know for an finitely long wire the magnetic field (${B_1}$) is given as
${B_1} = \dfrac{{{\mu _0}I}}{{2\pi r}}$ $wb/{m^2}$, where r is the perpendicular length from the center of the circle as we have to calculate the magnetic field at the center of the circle which is nothing but the radius of the circle as line is touching to the circle.
And for a circular loop the magnetic field (${B_2}$) is given as
${B_2} = \dfrac{{{\mu _0}I}}{{2r}}$$wb/{m^2}$, where r is the radius of the circular loop.
So the net magnetic field (B) of their combination is the difference of respective magnetic fields.
As we see that ${B_2}$ is greater than ${B_1}$ as the denominator of ${B_1}$ is larger than the denominator of ${B_2}$therefore net magnetic field is
$ \Rightarrow B = {B_2} - {B_1}$
Now substitute the values we have,
$ \Rightarrow B = \dfrac{{{\mu _0}I}}{{2r}} - \dfrac{{{\mu _0}I}}{{2\pi r}}$
Now take $\dfrac{{{\mu _0}I}}{{2\pi r}}$ as common we have,
$ \Rightarrow B = \dfrac{{{\mu _0}I}}{{2\pi r}}\left( {\pi - 1} \right)$ $wb/{m^2}$
This expression is also written as
$ \Rightarrow B = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{2I}}{r}\left( {\pi - 1} \right)$ $wb/{m^2}$
So this is the required answer.
Hence option (B) is the correct answer.
Note – It is always advisable to understand the geometry of the figure while solving problems of this kind as it helps knowing out the basic figures from which current is flowing. Current always leads to production of magnetic fields. The direct formula for magnetic fields due to basic figures need to be remembered, some of them are being mentioned above.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Capital of the Cheras was A Madurai B Muziri C Uraiyur class 10 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
A Tesla is equivalent to a A Newton per coulomb B Newton class 9 physics CBSE
Which are the Top 10 Largest Countries of the World?
The capital of British India was transferred from Calcutta class 10 social science CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
What is spore formation class 11 biology CBSE
Queen Victoria became the Empress of India according class 7 social science CBSE
Who was the first scientist to propose a model for class 11 chemistry CBSE