Answer
Verified
458.1k+ views
Hint-The relation between peak value of electric field and magnetic field in an electromagnetic wave is given as
$E = Bc$
Where, $E$ is the peak value of the electric field and $B$ is the peak value of the magnetic field and \[c\] is the speed of light.
The net peak value of magnetic field is given as
\[B = \sqrt {B_0^2 + B_1^2} \]
Force due to electric field on a charge $q$is given as
$F = qE$
Where, $q$ is the charge and $E$ is the electric field.
The relation connecting peak value and RMS value of force is
${F_{rms}} = \dfrac{F}{{\sqrt 2 }}$
Step by step solution:
Electromagnetic waves are created as a result of vibrations of electric field and magnetic field. So, we can say that they are composed of oscillating electric and magnetic fields
The relation between peak value of electric field and magnetic field in an electromagnetic wave is given as
$E = Bc$ ….. (1)
Where, $E$ is the peak value of the electric field and $B$ is the peak value of the magnetic field and \[c\] is the speed of light.
Given,
$Q = {10^{ - 4}}C$
The value of magnetic field of plane electromagnetic wave as
$\overrightarrow B = {B_0}\hat i\left[ {\cos \left( {kz - wt} \right)} \right] + {B_1}\hat j\left[ {\cos \left( {kz + wt} \right)} \right]$
From this we can see that the peak value of magnetic field in the x direction is ${B_0}$ and the peak value of magnetic field in the y direction is ${B_1}$.
So, the net peak value of magnetic field is given as
\[B = \sqrt {B_0^2 + B_1^2} \]
Substitute the given values,${B_0} = 3 \times {10^{ - 5}}T$ and ${B_1} = 2 \times {10^{ - 6}}T$.
\[
B = \sqrt {{{\left( {3 \times {{10}^{ - 5}}} \right)}^2} + {{\left( {2 \times {{10}^{ - 6}}} \right)}^2}} \\
= 3.006 \times {10^{ - 5}}\,T \\
\]
Now let us substitute this value in equation (1)
$
E = Bc \\
= 3.006 \times {10^{ - 5}} \times 3 \times {10^8} \\
= 9.018 \times {10^3}V{m^{ - 1}} \\
$
This is the peak value of the electric field.
Force due to electric field on a charge $q$is given as
$F = qE$
Where, $q$ is the charge and $E$ is the electric field.
Substitute the given values. Then, we get
$
F = {10^{ - 4}} \times 9.018 \times {10^3} \\
= 0.9018\,N \\
$
This is the peak value of force. We need to find the RMS value of force.
The relation connecting peak value and RMS value of force is
${F_{rms}} = \dfrac{F}{{\sqrt 2 }}$
On substituting the value of force in this equation, we get
$
{F_{rms}} = \dfrac{{0.9018\,}}{{\sqrt 2 }} \\
= 0.637\,N \\
$
So, the correct answer is option D.
Note: Here, it is given that the charge is stationary. Thus, only force due to the electric field is present. Effect of force due to the magnetic field will be felt only by moving charges. So, if the charge is moving then we should also consider the force due to the magnetic field.
$E = Bc$
Where, $E$ is the peak value of the electric field and $B$ is the peak value of the magnetic field and \[c\] is the speed of light.
The net peak value of magnetic field is given as
\[B = \sqrt {B_0^2 + B_1^2} \]
Force due to electric field on a charge $q$is given as
$F = qE$
Where, $q$ is the charge and $E$ is the electric field.
The relation connecting peak value and RMS value of force is
${F_{rms}} = \dfrac{F}{{\sqrt 2 }}$
Step by step solution:
Electromagnetic waves are created as a result of vibrations of electric field and magnetic field. So, we can say that they are composed of oscillating electric and magnetic fields
The relation between peak value of electric field and magnetic field in an electromagnetic wave is given as
$E = Bc$ ….. (1)
Where, $E$ is the peak value of the electric field and $B$ is the peak value of the magnetic field and \[c\] is the speed of light.
Given,
$Q = {10^{ - 4}}C$
The value of magnetic field of plane electromagnetic wave as
$\overrightarrow B = {B_0}\hat i\left[ {\cos \left( {kz - wt} \right)} \right] + {B_1}\hat j\left[ {\cos \left( {kz + wt} \right)} \right]$
From this we can see that the peak value of magnetic field in the x direction is ${B_0}$ and the peak value of magnetic field in the y direction is ${B_1}$.
So, the net peak value of magnetic field is given as
\[B = \sqrt {B_0^2 + B_1^2} \]
Substitute the given values,${B_0} = 3 \times {10^{ - 5}}T$ and ${B_1} = 2 \times {10^{ - 6}}T$.
\[
B = \sqrt {{{\left( {3 \times {{10}^{ - 5}}} \right)}^2} + {{\left( {2 \times {{10}^{ - 6}}} \right)}^2}} \\
= 3.006 \times {10^{ - 5}}\,T \\
\]
Now let us substitute this value in equation (1)
$
E = Bc \\
= 3.006 \times {10^{ - 5}} \times 3 \times {10^8} \\
= 9.018 \times {10^3}V{m^{ - 1}} \\
$
This is the peak value of the electric field.
Force due to electric field on a charge $q$is given as
$F = qE$
Where, $q$ is the charge and $E$ is the electric field.
Substitute the given values. Then, we get
$
F = {10^{ - 4}} \times 9.018 \times {10^3} \\
= 0.9018\,N \\
$
This is the peak value of force. We need to find the RMS value of force.
The relation connecting peak value and RMS value of force is
${F_{rms}} = \dfrac{F}{{\sqrt 2 }}$
On substituting the value of force in this equation, we get
$
{F_{rms}} = \dfrac{{0.9018\,}}{{\sqrt 2 }} \\
= 0.637\,N \\
$
So, the correct answer is option D.
Note: Here, it is given that the charge is stationary. Thus, only force due to the electric field is present. Effect of force due to the magnetic field will be felt only by moving charges. So, if the charge is moving then we should also consider the force due to the magnetic field.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE