
The maximum and minimum distances of a comet from the sun are \[V=3.0\times {{10}^{3}}m{{s}^{-1}}\] m and $8.0\times {{10}^{10}}$m respectively. If the speed of the comet at the nearest point is \[6\times {{10}^{4}}m{{s}^{-1}}\], the speed at the farthest point is:
a. \[1.5\times {{10}^{3}}m{{s}^{-1}}\]
b. \[4.5\times {{10}^{3}}m{{s}^{-1}}\]
c. \[3.0\times {{10}^{3}}m{{s}^{-1}}\]
d. \[6.0\times {{10}^{3}}m{{s}^{-1}}\]
Answer
127.8k+ views
Hint: As this problem comes under mechanics, it is possible to solve it if you know conservation laws. Here, conservation of angular momentum is used to solve the speed of a comet at the farthest distance. Conservation of angular momentum says that total angular momentum at any point remains constant.
Formula used:
\[V=\frac{rv}{R}\]
Where,
V=speed of comet at farthest distance.
R=maximum distance.
r=minimum distance.
Complete answer:
The orbit around the sun is elliptical. Let ‘r’ denote the minimum distance and ‘v’ denote the speed of the comet at the minimum distance. Let ‘R’ be the maximum distance and ‘V’ be the speed of the comet at farthest distance from sun and ‘m’ be the mass of the comet
From the conservation of angular momentum
Angular momentum at nearest point = Angular momentum at farthest point
\[mvr=mVR\]
Therefore, speed of comet at farthest distance is
\[V=\frac{rv}{R}\]
That is,
\[V=\frac{8\times {{10}^{10}}\times 6\times {{10}^{4}}}{1.6\times {{10}^{12}}}\]
On calculating we get the speed of comet as
\[V=3.0\times {{10}^{3}}m{{s}^{-1}}\]
Therefore, answer is (c).
Note: Here Kepler’s first law and second law is used. Kepler’s first law states that the path of revolution of the planet around the sun is elliptical. That is every revolving object has a point closer to the sun and farther to the sun. Kepler’s second law states that the radius vector sweeps equal area in equal intervals of time. That is for conserving angular momentum the speed of the planet nearer to the sun is high and at a point farther from the sun the speed of the planet is low. So this can be used to check your answer whether the answer we got is right or wrong.
Formula used:
\[V=\frac{rv}{R}\]
Where,
V=speed of comet at farthest distance.
R=maximum distance.
r=minimum distance.
Complete answer:
The orbit around the sun is elliptical. Let ‘r’ denote the minimum distance and ‘v’ denote the speed of the comet at the minimum distance. Let ‘R’ be the maximum distance and ‘V’ be the speed of the comet at farthest distance from sun and ‘m’ be the mass of the comet
From the conservation of angular momentum
Angular momentum at nearest point = Angular momentum at farthest point
\[mvr=mVR\]
Therefore, speed of comet at farthest distance is
\[V=\frac{rv}{R}\]
That is,
\[V=\frac{8\times {{10}^{10}}\times 6\times {{10}^{4}}}{1.6\times {{10}^{12}}}\]
On calculating we get the speed of comet as
\[V=3.0\times {{10}^{3}}m{{s}^{-1}}\]
Therefore, answer is (c).
Note: Here Kepler’s first law and second law is used. Kepler’s first law states that the path of revolution of the planet around the sun is elliptical. That is every revolving object has a point closer to the sun and farther to the sun. Kepler’s second law states that the radius vector sweeps equal area in equal intervals of time. That is for conserving angular momentum the speed of the planet nearer to the sun is high and at a point farther from the sun the speed of the planet is low. So this can be used to check your answer whether the answer we got is right or wrong.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

Wheatstone Bridge - Working Principle, Formula, Derivation, Application

Young's Double Slit Experiment Step by Step Derivation

JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Main Course 2025: Get All the Relevant Details

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Explain the construction and working of a GeigerMuller class 12 physics JEE_Main

Physics Average Value and RMS Value JEE Main 2025
