Answer
Verified
462.6k+ views
Hint: The Wien’s displacement law is a law which states the relationship between the emitted radiations and temperature of a black body. The wavelength is selected as the wavelength possessed by the most of the radiation. According to this law, the wavelength will be inversely proportional to the temperature of the black body. Here we can compare both the situations and finally we can find the value of $n$. These all may help you to solve this question.
Complete step by step answer:
As we all know, the wavelength of the light will be inversely proportional to the temperature of the body. This can be expressed mathematically as,
$\lambda \propto \dfrac{1}{T}$
That is we can write this as,
$\dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}}=\dfrac{{{T}_{2}}}{{{T}_{1}}}$
Where \[{{\lambda }_{1}}\]be the wavelength of the radiation in the first case. This can be written as per the question as,
\[{{\lambda }_{1}}=12\times {{10}^{-5}}cm\]
\[{{\lambda }_{2}}\]be the wavelength of the radiation mentioned in the second case. This can be written as,
\[{{\lambda }_{2}}=6\times {{10}^{-5}}cm\]
\[{{T}_{1}}\] be the temperature at which the maximum wavelength in the first case is radiating.
It can be written as,
\[{{T}_{1}}=nT\]
And \[{{T}_{2}}\]be the temperature at which the maximum wavelength in the second case is radiating,
The value can be expressed as,
\[{{T}_{2}}=T\]
Substituting all these values in the Wien’s displacement law, we can write that,
\[\begin{align}
& \dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}}=\dfrac{{{T}_{2}}}{{{T}_{1}}} \\
& \dfrac{12\times {{10}^{-5}}}{6\times {{10}^{-5}}}=\dfrac{T}{nT} \\
\end{align}\]
From this we will get that,
\[n=\dfrac{1}{2}\]
So, the correct answer is “Option A”.
Note: Wien's displacement law is helpful in determining the temperatures of hot radiant bodies as stars. This is needed for the determination of the temperature of any radiant body which is having a high temperature. Wien’s law is plotted in a graph where intensity is plotted as a function of wavelength.
Complete step by step answer:
As we all know, the wavelength of the light will be inversely proportional to the temperature of the body. This can be expressed mathematically as,
$\lambda \propto \dfrac{1}{T}$
That is we can write this as,
$\dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}}=\dfrac{{{T}_{2}}}{{{T}_{1}}}$
Where \[{{\lambda }_{1}}\]be the wavelength of the radiation in the first case. This can be written as per the question as,
\[{{\lambda }_{1}}=12\times {{10}^{-5}}cm\]
\[{{\lambda }_{2}}\]be the wavelength of the radiation mentioned in the second case. This can be written as,
\[{{\lambda }_{2}}=6\times {{10}^{-5}}cm\]
\[{{T}_{1}}\] be the temperature at which the maximum wavelength in the first case is radiating.
It can be written as,
\[{{T}_{1}}=nT\]
And \[{{T}_{2}}\]be the temperature at which the maximum wavelength in the second case is radiating,
The value can be expressed as,
\[{{T}_{2}}=T\]
Substituting all these values in the Wien’s displacement law, we can write that,
\[\begin{align}
& \dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}}=\dfrac{{{T}_{2}}}{{{T}_{1}}} \\
& \dfrac{12\times {{10}^{-5}}}{6\times {{10}^{-5}}}=\dfrac{T}{nT} \\
\end{align}\]
From this we will get that,
\[n=\dfrac{1}{2}\]
So, the correct answer is “Option A”.
Note: Wien's displacement law is helpful in determining the temperatures of hot radiant bodies as stars. This is needed for the determination of the temperature of any radiant body which is having a high temperature. Wien’s law is plotted in a graph where intensity is plotted as a function of wavelength.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE