
The maximum value of the expression $ \dfrac{1}{{{\sin }^{2}}\theta +3\sin \theta \cos \theta +5{{\cos }^{2}}\theta } $ isA. 0B. 1C. 2D. 3E. 4
Answer
564.9k+ views
Hint: We need to find the minimum value of $ {{\sin }^{2}}\theta +3\sin \theta \cos \theta +5{{\cos }^{2}}\theta $ to find the maximum value of the expression $ \dfrac{1}{{{\sin }^{2}}\theta +3\sin \theta \cos \theta +5{{\cos }^{2}}\theta } $ . First, simplify the expression using trigonometric formulas. Then we try to convert the equation into an equation of singular ratio using the formula of $ \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B $ . Then we apply the condition of minimum value to get the answer.
Complete step by step answer:
Note:
Complete step by step answer:
First, we try to find the simplified form of the equation $ {{\sin }^{2}}\theta +3\sin \theta \cos \theta +5{{\cos }^{2}}\theta $ .
We have the identity theorem of $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ .
We convert the equation as
$ \Rightarrow {{\sin }^{2}}\theta +3\sin \theta \cos \theta +5{{\cos }^{2}}\theta $
$=\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)+\dfrac{3}{2}\left( 2\sin \theta \cos \theta \right)+4{{\cos }^{2}}\theta $
$ =1+\dfrac{3}{2}\left( 2\sin \theta \cos \theta \right)+2\left( 2{{\cos }^{2}}\theta \right) $
Now we apply the theorems of $ \sin 2\theta =2\sin \theta \cos \theta $ and $ 1+\cos 2\theta =2{{\cos }^{2}}\theta $.
$ \Rightarrow 1+\dfrac{3}{2}\left( 2\sin \theta \cos \theta \right)+2\left( 2{{\cos }^{2}}\theta \right) $
$ =1+\dfrac{3}{2}\left( \sin 2\theta \right)+2\left( 1+\cos 2\theta \right) $
$ =3+\dfrac{3\sin 2\theta }{2}+2\cos 2\theta $
To find the maximum value of the expression $ \dfrac{1}{{{\sin }^{2}}\theta +3\sin \theta \cos \theta +5{{\cos }^{2}}\theta } $ , we need to find the minimum value of $ {{\sin }^{2}}\theta +3\sin \theta \cos \theta +5{{\cos }^{2}}\theta $ which is equal to $ 3+\dfrac{3\sin 2\theta }{2}+2\cos 2\theta $ .
Now we try to convert the equation into one particular ratio.
We will take $\dfrac{5}{2} $ common from sin and cos terms and get
$ 3+\dfrac{3\sin 2\theta }{2}+2\cos 2\theta =3+\dfrac{5}{2}\left( \dfrac{3}{5}\sin 2\theta +\dfrac{4}{5}\cos 2\theta \right) $ .
We assume $ \cos \alpha =\dfrac{3}{5} $ which gives $ \sin \alpha =\sqrt{1-{{\left( \dfrac{3}{5} \right)}^{2}}}=\sqrt{1-\dfrac{9}{25}}=\sqrt{\dfrac{16}{25}}=\dfrac{4}{5} $ .
The equation becomes $ 3+\dfrac{5}{2}\left( \dfrac{3}{5}\sin 2\theta +\dfrac{4}{5}\cos 2\theta \right)=3+\dfrac{5}{2}\left( \sin 2\theta \cos \alpha +\cos 2\theta \sin \alpha \right) $ .
Now we apply $ \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B $ . We assume $ A=2\theta ;B=\alpha $ .
\[3+\dfrac{5}{2}\left( \sin 2\theta \cos \alpha +\cos 2\theta \sin \alpha \right)=3+\dfrac{5}{2}\sin \left( 2\theta +\alpha \right)\].
Now we know that for any value of $ x\in \mathbb{R} $, the minimum value of $ \sin x $ is -1.
This means the minimum value of \[\sin \left( 2\theta +\alpha \right)\] is \[-1\]. We will find the minimum value of \[3+\dfrac{5}{2}\sin \left( 2\theta +\alpha \right)\] by putting minimum value of \[\sin \left( 2\theta +\alpha \right)\] as \[-1\].
So,\[3+\dfrac{5}{2}\sin \left( 2\theta +\alpha \right)=\]\[3+\dfrac{5}{2}\times(-1)\]
\[=\dfrac{1}{2}\]
Therefore, the minimum value of $ 3+\dfrac{3\sin 2\theta }{2}+2\cos 2\theta $ which is equal to $ {{\sin }^{2}}\theta +3\sin \theta \cos \theta +5{{\cos }^{2}}\theta $ , is $ \dfrac{1}{2} $ .
The maximum value of the expression $ \dfrac{1}{{{\sin }^{2}}\theta +3\sin \theta \cos \theta +5{{\cos }^{2}}\theta } $ is $ \dfrac{1}{\dfrac{1}{2}}=2 $ .
The correct option is (C).Note:
The general formula of finding minimum and maximum value of equation types like $ a\sin \alpha +b\cos \alpha $ is $ -\sqrt{{{a}^{2}}+{{b}^{2}}}\le \left( a\sin \alpha +b\cos \alpha \right)\le \sqrt{{{a}^{2}}+{{b}^{2}}} $ . For any values of $ x\in \mathbb{R} $ , minimum and maximum values of ratios like $ \sin x,\cos x $ is $ -1\le \sin x,\cos x\le 1 $ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

