Answer
Verified
441.6k+ views
Hint: The sum of the squares of the observations is equal to the sum of the variance multiplied with the number of terms and the mean of the observations times the number of observations given. The variance of the distribution is equal to the square of the standard deviation of the data.
Complete step-by-step answer:
The mean of the $ 100 $ observations is $ 50 $ and their standard deviation is $ 5 $ .
As per given in the question the standard deviation of $ 100 $ observations is $ 5 $ . The variance of the data is always equal to the square of the standard deviation of the data.
The variance of the data is equal to $ {\sigma ^2} = {5^2} = 25 $ .
Now according to the formula the sum of the squares of the observations is equal to the sum of the variance multiplied with number of terms and the mean of the observations times the number of observations given i.e.
$ {\sigma ^2} = \dfrac{1}{n}\left( ({\sum {x_i^2) - {{n\times \overline X }^2}} } \right) $ .
As per given in the question, the mean of the data is equal to $ 50 $ i.e. $ \overline X = 50 $ and the number of terms is equal to $ n = 100 $ .
Substitute the value of the variance, mean and number of observations in the formula:
$
{\sigma ^2} = \dfrac{1}{n}\left(( {\sum\limits_{i = 1}^{100} {x_i^2) - {{N\times \overline X }^2}} } \right) \\
25 = \dfrac{1}{{100}}\left( {\sum\limits_{i = 1}^{100} {x_i^2} - 100{{\left( {50} \right)}^2}} \right) \\
2500 = \sum\limits_{i = 1}^{100} {x_i^2} - 250000 \\
\sum\limits_{i = 1}^{100} {x_i^2} = 250000 + 2500 \\
\sum\limits_{i = 1}^{100} {x_i^2} = 252500 \;
$
So, the sum of the squares of the observations is equal to $ 252500 $ .
So, the correct answer is “Option C”.
Note: The variance of the data is always equal to the square of the standard deviation of the given data and the formula used for finding the sum of the squares of terms is given by $ {\sigma ^2} = \dfrac{1}{n}\left( {\sum {x_i^2 - {{\overline X }^2}} } \right) $ .
Complete step-by-step answer:
The mean of the $ 100 $ observations is $ 50 $ and their standard deviation is $ 5 $ .
As per given in the question the standard deviation of $ 100 $ observations is $ 5 $ . The variance of the data is always equal to the square of the standard deviation of the data.
The variance of the data is equal to $ {\sigma ^2} = {5^2} = 25 $ .
Now according to the formula the sum of the squares of the observations is equal to the sum of the variance multiplied with number of terms and the mean of the observations times the number of observations given i.e.
$ {\sigma ^2} = \dfrac{1}{n}\left( ({\sum {x_i^2) - {{n\times \overline X }^2}} } \right) $ .
As per given in the question, the mean of the data is equal to $ 50 $ i.e. $ \overline X = 50 $ and the number of terms is equal to $ n = 100 $ .
Substitute the value of the variance, mean and number of observations in the formula:
$
{\sigma ^2} = \dfrac{1}{n}\left(( {\sum\limits_{i = 1}^{100} {x_i^2) - {{N\times \overline X }^2}} } \right) \\
25 = \dfrac{1}{{100}}\left( {\sum\limits_{i = 1}^{100} {x_i^2} - 100{{\left( {50} \right)}^2}} \right) \\
2500 = \sum\limits_{i = 1}^{100} {x_i^2} - 250000 \\
\sum\limits_{i = 1}^{100} {x_i^2} = 250000 + 2500 \\
\sum\limits_{i = 1}^{100} {x_i^2} = 252500 \;
$
So, the sum of the squares of the observations is equal to $ 252500 $ .
So, the correct answer is “Option C”.
Note: The variance of the data is always equal to the square of the standard deviation of the given data and the formula used for finding the sum of the squares of terms is given by $ {\sigma ^2} = \dfrac{1}{n}\left( {\sum {x_i^2 - {{\overline X }^2}} } \right) $ .
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE