Answer
Verified
468.6k+ views
Hint: In this problem; first we will find the total weight of boys and total weight of girls. We are also given a total no of students (boys + girls) as 150. We will use both the relations to find the total number of boys and girls in the class. Apply the formula:
Complete step by step solution:
Note: In this question if we knew the formula for average weight, we can solve this question very easily. The formula to calculate the average weight is given by:
$\text{Mean weight of students}=\dfrac{\text{Total weights of students}}{\text{No of students}}$
Given: Total no of students in the class = 150
Let number of boys in the class be ‘x’
Let number of girls in the class be ‘y’
∴ x + y = 150 -eq (1) (As it is given that total no of students are 150)
It is also given that, mean weight of boys in the class is 70 kg
i.e. Mean weight of x boys = 70kg
$\text{We know mean weight of boys}=\dfrac{\text{Total weight of all boys}}{\text{Total no of boys}}$
Since, Mean weight of x boys = 70 kg
$\therefore \,\quad \dfrac{\text{Total weight of all }x\text{ boys}}{\text{No of boys}}=70\,\text{kg}$
$\therefore \,\quad \dfrac{\text{Total weight of all boys}}{x}=70\,\text{kg}$
∴ Total weight of x boys = 70 x kg
It is also given that mean weight of y all girls is 55 kgs
i.e. Mean weight of girls = 55 kg
$\dfrac{\text{Total weight of all }y\text{ girls}}{\text{No of girls}}=55\,\text{kg}$
$\dfrac{\text{Total weight of all }y\text{ girls}}{y}=55\,\text{kg}$
∴ Total weight of y girls = 55 y kgs
It is also given that the mean weight of 150 students is 60 kg.
⇒ Mean weight of 150 students = 60 kg
$\Rightarrow \quad \dfrac{\text{Total weight of }150\text{ students}}{\text{No of students}}=60\,\text{kg}$
$\Rightarrow \quad \dfrac{\text{Total weight of }150\text{ students}}{150}=60\,\text{kg}$
∴ Total weight of 150 students = 150 × 60 kg
= 9000 kg
We know,
Total weight of 150 students = Total weight of x boys + Total weight of y girls
= 70x + 55y
∴ 70x + 55y = 9000 -eq (2)
Dividing by 5 on both sides in eq-(2), we get,
14x + 11y = 1800 -eq (3)
We also have x + y = 150
Multiplying 11 on both sides of eq -(1) we get,
11x + 11y = 1650 -eq (4)
Subtracting eq (4) from eq (3), we get:
3x = 150
⇒ x = 50
y = 150 − x = 150 − 50 = 100
y = 100
We got, Total no of boys, x = 50
& Total no of girls, y = 100
∴ Therefore, the correct option is (B). 50,100.
$\text{Mean weight of students}=\dfrac{\text{Total weights of students}}{\text{Number of students}}$
You should be very careful in the calculation part as this problem involves a lot of equations.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE