Answer
Verified
447k+ views
Hint: Use the formula for the force per unit area of a charged conductor. Use the concept that this force per unit area of the plate is balanced by the weight per unit area of the body. This gives the relation between the surface charge density on the plate, mass per unit area of the body and permittivity of free space.
Formula used:
The force per unit area \[\dfrac{F}{{ds}}\] of a charged conductor is given by
\[\dfrac{F}{{ds}} = \dfrac{{{\sigma ^2}}}{{2{\varepsilon _0}}}\] …… (1)
Here, \[\sigma \] is the surface charge density and \[{\varepsilon _0}\] is the permittivity of free space.
Complete answer: or Complete step by step answer:
The mass per unit area of the body is \[2\,{\text{kg/}}{{\text{m}}^{\text{2}}}\] and the body is just lifted.
\[m = 2\,{\text{kg/}}{{\text{m}}^{\text{2}}}\]
Hence, the surface per unit area \[\dfrac{F}{{ds}}\] of the plate is balanced by the weight per unit area \[mg\] of the body.
\[\dfrac{F}{{ds}} = mg\]
Here, is the mass per unit area of the body.
The permittivity of free space \[{\varepsilon _0}\] is \[8.85 \times {10^{ - 12}}\,{{\text{C}}^2}/{\text{N}} \cdot {{\text{m}}^2}\].
\[{\varepsilon _0} = 8.85 \times {10^{ - 12}}\,{{\text{C}}^2}/{\text{N}} \cdot {{\text{m}}^2}\]
Determine the surface charge density on the plate.
Substitute for \[\dfrac{F}{{ds}}\] in the above equation.
\[\dfrac{{{\sigma ^2}}}{{2{\varepsilon _0}}} = mg\]
Rearrange the above equation for the square of surface charge density \[{\sigma ^2}\] on the plate.
\[{\sigma ^2} = 2{\varepsilon _0}mg\]
Take square root on both sides of the above equation.
\[\sigma = \sqrt {2{\varepsilon _0}mg} \]
Substitute \[8.85 \times {10^{ - 12}}\,{{\text{C}}^2}/{\text{N}} \cdot {{\text{m}}^2}\] for \[{\varepsilon _0}\], \[2\,{\text{kg/}}{{\text{m}}^{\text{2}}}\] for \[m\] and \[9.8\,{\text{m/}}{{\text{s}}^2}\] for \[g\] in the above equation.
\[\sigma = \sqrt {2\left( {8.85 \times {{10}^{ - 12}}\,{{\text{C}}^2}/{\text{N}} \cdot {{\text{m}}^2}} \right)\left( {2\,{\text{kg/}}{{\text{m}}^{\text{2}}}} \right)\left( {9.8\,{\text{m/}}{{\text{s}}^2}} \right)} \]
\[ \Rightarrow \sigma = \sqrt {346.92 \times {{10}^{ - 12}}} \]
\[ \Rightarrow \sigma = 18.62 \times {10^{ - 6}}\]
\[ \Rightarrow \sigma = 1.86 \times {10^{ - 5}}\,{\text{C/}}{{\text{m}}^{\text{2}}}\]
Therefore, the surface charge density on the plate is \[1.86 \times {10^{ - 5}}\,{\text{C/}}{{\text{m}}^{\text{2}}}\].
So, the correct answer is “Option C”.
Note:
Generally, force on an object is balanced by its weight. Here, the force per unit area is balanced by weight per unit area as the area on both sides of the equation gets cancelled.
Formula used:
The force per unit area \[\dfrac{F}{{ds}}\] of a charged conductor is given by
\[\dfrac{F}{{ds}} = \dfrac{{{\sigma ^2}}}{{2{\varepsilon _0}}}\] …… (1)
Here, \[\sigma \] is the surface charge density and \[{\varepsilon _0}\] is the permittivity of free space.
Complete answer: or Complete step by step answer:
The mass per unit area of the body is \[2\,{\text{kg/}}{{\text{m}}^{\text{2}}}\] and the body is just lifted.
\[m = 2\,{\text{kg/}}{{\text{m}}^{\text{2}}}\]
Hence, the surface per unit area \[\dfrac{F}{{ds}}\] of the plate is balanced by the weight per unit area \[mg\] of the body.
\[\dfrac{F}{{ds}} = mg\]
Here, is the mass per unit area of the body.
The permittivity of free space \[{\varepsilon _0}\] is \[8.85 \times {10^{ - 12}}\,{{\text{C}}^2}/{\text{N}} \cdot {{\text{m}}^2}\].
\[{\varepsilon _0} = 8.85 \times {10^{ - 12}}\,{{\text{C}}^2}/{\text{N}} \cdot {{\text{m}}^2}\]
Determine the surface charge density on the plate.
Substitute for \[\dfrac{F}{{ds}}\] in the above equation.
\[\dfrac{{{\sigma ^2}}}{{2{\varepsilon _0}}} = mg\]
Rearrange the above equation for the square of surface charge density \[{\sigma ^2}\] on the plate.
\[{\sigma ^2} = 2{\varepsilon _0}mg\]
Take square root on both sides of the above equation.
\[\sigma = \sqrt {2{\varepsilon _0}mg} \]
Substitute \[8.85 \times {10^{ - 12}}\,{{\text{C}}^2}/{\text{N}} \cdot {{\text{m}}^2}\] for \[{\varepsilon _0}\], \[2\,{\text{kg/}}{{\text{m}}^{\text{2}}}\] for \[m\] and \[9.8\,{\text{m/}}{{\text{s}}^2}\] for \[g\] in the above equation.
\[\sigma = \sqrt {2\left( {8.85 \times {{10}^{ - 12}}\,{{\text{C}}^2}/{\text{N}} \cdot {{\text{m}}^2}} \right)\left( {2\,{\text{kg/}}{{\text{m}}^{\text{2}}}} \right)\left( {9.8\,{\text{m/}}{{\text{s}}^2}} \right)} \]
\[ \Rightarrow \sigma = \sqrt {346.92 \times {{10}^{ - 12}}} \]
\[ \Rightarrow \sigma = 18.62 \times {10^{ - 6}}\]
\[ \Rightarrow \sigma = 1.86 \times {10^{ - 5}}\,{\text{C/}}{{\text{m}}^{\text{2}}}\]
Therefore, the surface charge density on the plate is \[1.86 \times {10^{ - 5}}\,{\text{C/}}{{\text{m}}^{\text{2}}}\].
So, the correct answer is “Option C”.
Note:
Generally, force on an object is balanced by its weight. Here, the force per unit area is balanced by weight per unit area as the area on both sides of the equation gets cancelled.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE