Answer
Verified
457.5k+ views
Hint: Use the formula for the force per unit area of a charged conductor. Use the concept that this force per unit area of the plate is balanced by the weight per unit area of the body. This gives the relation between the surface charge density on the plate, mass per unit area of the body and permittivity of free space.
Formula used:
The force per unit area \[\dfrac{F}{{ds}}\] of a charged conductor is given by
\[\dfrac{F}{{ds}} = \dfrac{{{\sigma ^2}}}{{2{\varepsilon _0}}}\] …… (1)
Here, \[\sigma \] is the surface charge density and \[{\varepsilon _0}\] is the permittivity of free space.
Complete answer: or Complete step by step answer:
The mass per unit area of the body is \[2\,{\text{kg/}}{{\text{m}}^{\text{2}}}\] and the body is just lifted.
\[m = 2\,{\text{kg/}}{{\text{m}}^{\text{2}}}\]
Hence, the surface per unit area \[\dfrac{F}{{ds}}\] of the plate is balanced by the weight per unit area \[mg\] of the body.
\[\dfrac{F}{{ds}} = mg\]
Here, is the mass per unit area of the body.
The permittivity of free space \[{\varepsilon _0}\] is \[8.85 \times {10^{ - 12}}\,{{\text{C}}^2}/{\text{N}} \cdot {{\text{m}}^2}\].
\[{\varepsilon _0} = 8.85 \times {10^{ - 12}}\,{{\text{C}}^2}/{\text{N}} \cdot {{\text{m}}^2}\]
Determine the surface charge density on the plate.
Substitute for \[\dfrac{F}{{ds}}\] in the above equation.
\[\dfrac{{{\sigma ^2}}}{{2{\varepsilon _0}}} = mg\]
Rearrange the above equation for the square of surface charge density \[{\sigma ^2}\] on the plate.
\[{\sigma ^2} = 2{\varepsilon _0}mg\]
Take square root on both sides of the above equation.
\[\sigma = \sqrt {2{\varepsilon _0}mg} \]
Substitute \[8.85 \times {10^{ - 12}}\,{{\text{C}}^2}/{\text{N}} \cdot {{\text{m}}^2}\] for \[{\varepsilon _0}\], \[2\,{\text{kg/}}{{\text{m}}^{\text{2}}}\] for \[m\] and \[9.8\,{\text{m/}}{{\text{s}}^2}\] for \[g\] in the above equation.
\[\sigma = \sqrt {2\left( {8.85 \times {{10}^{ - 12}}\,{{\text{C}}^2}/{\text{N}} \cdot {{\text{m}}^2}} \right)\left( {2\,{\text{kg/}}{{\text{m}}^{\text{2}}}} \right)\left( {9.8\,{\text{m/}}{{\text{s}}^2}} \right)} \]
\[ \Rightarrow \sigma = \sqrt {346.92 \times {{10}^{ - 12}}} \]
\[ \Rightarrow \sigma = 18.62 \times {10^{ - 6}}\]
\[ \Rightarrow \sigma = 1.86 \times {10^{ - 5}}\,{\text{C/}}{{\text{m}}^{\text{2}}}\]
Therefore, the surface charge density on the plate is \[1.86 \times {10^{ - 5}}\,{\text{C/}}{{\text{m}}^{\text{2}}}\].
So, the correct answer is “Option C”.
Note:
Generally, force on an object is balanced by its weight. Here, the force per unit area is balanced by weight per unit area as the area on both sides of the equation gets cancelled.
Formula used:
The force per unit area \[\dfrac{F}{{ds}}\] of a charged conductor is given by
\[\dfrac{F}{{ds}} = \dfrac{{{\sigma ^2}}}{{2{\varepsilon _0}}}\] …… (1)
Here, \[\sigma \] is the surface charge density and \[{\varepsilon _0}\] is the permittivity of free space.
Complete answer: or Complete step by step answer:
The mass per unit area of the body is \[2\,{\text{kg/}}{{\text{m}}^{\text{2}}}\] and the body is just lifted.
\[m = 2\,{\text{kg/}}{{\text{m}}^{\text{2}}}\]
Hence, the surface per unit area \[\dfrac{F}{{ds}}\] of the plate is balanced by the weight per unit area \[mg\] of the body.
\[\dfrac{F}{{ds}} = mg\]
Here, is the mass per unit area of the body.
The permittivity of free space \[{\varepsilon _0}\] is \[8.85 \times {10^{ - 12}}\,{{\text{C}}^2}/{\text{N}} \cdot {{\text{m}}^2}\].
\[{\varepsilon _0} = 8.85 \times {10^{ - 12}}\,{{\text{C}}^2}/{\text{N}} \cdot {{\text{m}}^2}\]
Determine the surface charge density on the plate.
Substitute for \[\dfrac{F}{{ds}}\] in the above equation.
\[\dfrac{{{\sigma ^2}}}{{2{\varepsilon _0}}} = mg\]
Rearrange the above equation for the square of surface charge density \[{\sigma ^2}\] on the plate.
\[{\sigma ^2} = 2{\varepsilon _0}mg\]
Take square root on both sides of the above equation.
\[\sigma = \sqrt {2{\varepsilon _0}mg} \]
Substitute \[8.85 \times {10^{ - 12}}\,{{\text{C}}^2}/{\text{N}} \cdot {{\text{m}}^2}\] for \[{\varepsilon _0}\], \[2\,{\text{kg/}}{{\text{m}}^{\text{2}}}\] for \[m\] and \[9.8\,{\text{m/}}{{\text{s}}^2}\] for \[g\] in the above equation.
\[\sigma = \sqrt {2\left( {8.85 \times {{10}^{ - 12}}\,{{\text{C}}^2}/{\text{N}} \cdot {{\text{m}}^2}} \right)\left( {2\,{\text{kg/}}{{\text{m}}^{\text{2}}}} \right)\left( {9.8\,{\text{m/}}{{\text{s}}^2}} \right)} \]
\[ \Rightarrow \sigma = \sqrt {346.92 \times {{10}^{ - 12}}} \]
\[ \Rightarrow \sigma = 18.62 \times {10^{ - 6}}\]
\[ \Rightarrow \sigma = 1.86 \times {10^{ - 5}}\,{\text{C/}}{{\text{m}}^{\text{2}}}\]
Therefore, the surface charge density on the plate is \[1.86 \times {10^{ - 5}}\,{\text{C/}}{{\text{m}}^{\text{2}}}\].
So, the correct answer is “Option C”.
Note:
Generally, force on an object is balanced by its weight. Here, the force per unit area is balanced by weight per unit area as the area on both sides of the equation gets cancelled.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE