
The minimum surface charge density on the plate, so that a body of mass \[2\,{\text{kg/}}{{\text{m}}^{\text{2}}}\] may just be lifted, is
A. \[2.84 \times {10^{ - 5}}\,{\text{C/}}{{\text{m}}^{\text{2}}}\]
B. \[2.25 \times {10^{ - 5}}\,{\text{C/}}{{\text{m}}^{\text{2}}}\]
C. \[1.86 \times {10^{ - 5}}\,{\text{C/}}{{\text{m}}^{\text{2}}}\]
D. None of these
Answer
475.2k+ views
Hint: Use the formula for the force per unit area of a charged conductor. Use the concept that this force per unit area of the plate is balanced by the weight per unit area of the body. This gives the relation between the surface charge density on the plate, mass per unit area of the body and permittivity of free space.
Formula used:
The force per unit area \[\dfrac{F}{{ds}}\] of a charged conductor is given by
\[\dfrac{F}{{ds}} = \dfrac{{{\sigma ^2}}}{{2{\varepsilon _0}}}\] …… (1)
Here, \[\sigma \] is the surface charge density and \[{\varepsilon _0}\] is the permittivity of free space.
Complete answer: or Complete step by step answer:
The mass per unit area of the body is \[2\,{\text{kg/}}{{\text{m}}^{\text{2}}}\] and the body is just lifted.
\[m = 2\,{\text{kg/}}{{\text{m}}^{\text{2}}}\]
Hence, the surface per unit area \[\dfrac{F}{{ds}}\] of the plate is balanced by the weight per unit area \[mg\] of the body.
\[\dfrac{F}{{ds}} = mg\]
Here, is the mass per unit area of the body.
The permittivity of free space \[{\varepsilon _0}\] is \[8.85 \times {10^{ - 12}}\,{{\text{C}}^2}/{\text{N}} \cdot {{\text{m}}^2}\].
\[{\varepsilon _0} = 8.85 \times {10^{ - 12}}\,{{\text{C}}^2}/{\text{N}} \cdot {{\text{m}}^2}\]
Determine the surface charge density on the plate.
Substitute for \[\dfrac{F}{{ds}}\] in the above equation.
\[\dfrac{{{\sigma ^2}}}{{2{\varepsilon _0}}} = mg\]
Rearrange the above equation for the square of surface charge density \[{\sigma ^2}\] on the plate.
\[{\sigma ^2} = 2{\varepsilon _0}mg\]
Take square root on both sides of the above equation.
\[\sigma = \sqrt {2{\varepsilon _0}mg} \]
Substitute \[8.85 \times {10^{ - 12}}\,{{\text{C}}^2}/{\text{N}} \cdot {{\text{m}}^2}\] for \[{\varepsilon _0}\], \[2\,{\text{kg/}}{{\text{m}}^{\text{2}}}\] for \[m\] and \[9.8\,{\text{m/}}{{\text{s}}^2}\] for \[g\] in the above equation.
\[\sigma = \sqrt {2\left( {8.85 \times {{10}^{ - 12}}\,{{\text{C}}^2}/{\text{N}} \cdot {{\text{m}}^2}} \right)\left( {2\,{\text{kg/}}{{\text{m}}^{\text{2}}}} \right)\left( {9.8\,{\text{m/}}{{\text{s}}^2}} \right)} \]
\[ \Rightarrow \sigma = \sqrt {346.92 \times {{10}^{ - 12}}} \]
\[ \Rightarrow \sigma = 18.62 \times {10^{ - 6}}\]
\[ \Rightarrow \sigma = 1.86 \times {10^{ - 5}}\,{\text{C/}}{{\text{m}}^{\text{2}}}\]
Therefore, the surface charge density on the plate is \[1.86 \times {10^{ - 5}}\,{\text{C/}}{{\text{m}}^{\text{2}}}\].
So, the correct answer is “Option C”.
Note:
Generally, force on an object is balanced by its weight. Here, the force per unit area is balanced by weight per unit area as the area on both sides of the equation gets cancelled.
Formula used:
The force per unit area \[\dfrac{F}{{ds}}\] of a charged conductor is given by
\[\dfrac{F}{{ds}} = \dfrac{{{\sigma ^2}}}{{2{\varepsilon _0}}}\] …… (1)
Here, \[\sigma \] is the surface charge density and \[{\varepsilon _0}\] is the permittivity of free space.
Complete answer: or Complete step by step answer:
The mass per unit area of the body is \[2\,{\text{kg/}}{{\text{m}}^{\text{2}}}\] and the body is just lifted.
\[m = 2\,{\text{kg/}}{{\text{m}}^{\text{2}}}\]
Hence, the surface per unit area \[\dfrac{F}{{ds}}\] of the plate is balanced by the weight per unit area \[mg\] of the body.
\[\dfrac{F}{{ds}} = mg\]
Here, is the mass per unit area of the body.
The permittivity of free space \[{\varepsilon _0}\] is \[8.85 \times {10^{ - 12}}\,{{\text{C}}^2}/{\text{N}} \cdot {{\text{m}}^2}\].
\[{\varepsilon _0} = 8.85 \times {10^{ - 12}}\,{{\text{C}}^2}/{\text{N}} \cdot {{\text{m}}^2}\]
Determine the surface charge density on the plate.
Substitute for \[\dfrac{F}{{ds}}\] in the above equation.
\[\dfrac{{{\sigma ^2}}}{{2{\varepsilon _0}}} = mg\]
Rearrange the above equation for the square of surface charge density \[{\sigma ^2}\] on the plate.
\[{\sigma ^2} = 2{\varepsilon _0}mg\]
Take square root on both sides of the above equation.
\[\sigma = \sqrt {2{\varepsilon _0}mg} \]
Substitute \[8.85 \times {10^{ - 12}}\,{{\text{C}}^2}/{\text{N}} \cdot {{\text{m}}^2}\] for \[{\varepsilon _0}\], \[2\,{\text{kg/}}{{\text{m}}^{\text{2}}}\] for \[m\] and \[9.8\,{\text{m/}}{{\text{s}}^2}\] for \[g\] in the above equation.
\[\sigma = \sqrt {2\left( {8.85 \times {{10}^{ - 12}}\,{{\text{C}}^2}/{\text{N}} \cdot {{\text{m}}^2}} \right)\left( {2\,{\text{kg/}}{{\text{m}}^{\text{2}}}} \right)\left( {9.8\,{\text{m/}}{{\text{s}}^2}} \right)} \]
\[ \Rightarrow \sigma = \sqrt {346.92 \times {{10}^{ - 12}}} \]
\[ \Rightarrow \sigma = 18.62 \times {10^{ - 6}}\]
\[ \Rightarrow \sigma = 1.86 \times {10^{ - 5}}\,{\text{C/}}{{\text{m}}^{\text{2}}}\]
Therefore, the surface charge density on the plate is \[1.86 \times {10^{ - 5}}\,{\text{C/}}{{\text{m}}^{\text{2}}}\].
So, the correct answer is “Option C”.
Note:
Generally, force on an object is balanced by its weight. Here, the force per unit area is balanced by weight per unit area as the area on both sides of the equation gets cancelled.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Types of lever in which effort is in between fulcrum class 12 physics CBSE

A two input XOR Gate produces a high output only when class 12 physics CBSE

Who is Mukesh What is his dream Why does it look like class 12 english CBSE

Who was RajKumar Shukla Why did he come to Lucknow class 12 english CBSE

The word Maasai is derived from the word Maa Maasai class 12 social science CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
