The minute hand of a clock is 1.5 cm long. How far does its tip move in 40 minutes?
Answer
Verified
482.1k+ views
Hint: We will first find the angle it covers in 40 minutes. Now, we will use the formula \[l = r.\theta \], where $l$ is the arc length, r is the radius that is the length of the minute hand and $\theta $ is the angle covered. Thus, we will have the distance covered by the tip.
Complete step-by-step answer:
We are given that the minute hand of a clock is 1.5 cm long.
We need to find the distance covered by its tip in 40 minutes. Its tip is obviously the last point on the hand which moves in a circular motion. Hence, it will cover the perimeter. So, we basically need to find that part of circumference, which can cover in 40 minutes.
We know that $Circumference = 2\pi r$, where r is the radius of the circle. So, when we cover $2\pi = {360^ \circ }$, we get $Circumference = 2\pi r$.
Hence, r is multiplied to the angle covered.
Hence, now we have: \[l = r.\theta \], where $l$ is the arc length, r is the radius that is the length of the minute hand and $\theta $ is the angle covered.
Now, we know about the formula a bit more.
We also know that 1 hr = 60 minutes.
Hence, a minute hand will cover the whole \[{360^ \circ }\] in 60 minutes.
So, 60 minutes are equivalent to \[{360^ \circ }\].
$ \Rightarrow $ 1 minute is equivalent to $\dfrac{{{{360}^ \circ }}}{{60}} = {6^ \circ }$.
$ \Rightarrow $ 40 minutes are equivalent to $40 \times {6^ \circ } = {240^ \circ }$.
Now, we need the angle in radians.
${180^ \circ } = \pi $
$ \Rightarrow {1^ \circ } = \dfrac{\pi }{{180}}$
$ \Rightarrow {240^ \circ } = \dfrac{\pi }{{180}} \times 240 = \dfrac{{4\pi }}{3}$ ……….(1)
Now, coming to the formula \[l = r.\theta \].
$ \Rightarrow l = (1.5) \times \dfrac{{4\pi }}{3}$ (Using (1))
$ \Rightarrow l = (1.5) \times \dfrac{{4 \times 3.14}}{3} = 6.28cm$ (Since, $\pi = 3.14$)
Hence, $l = 6.28cm$ is the distance covered by its tip in 40 minutes.
Note: The students must always remember to change the angles from degree to change the angle in $\pi $. They make mistakes by forgetting to do so.
The students might forget to put the unit of arc length at the end, but they must remember that length is measured in units only. If I write 5 that would not signify anything. It would just be a number, not length or volume or area.
Complete step-by-step answer:
We are given that the minute hand of a clock is 1.5 cm long.
We need to find the distance covered by its tip in 40 minutes. Its tip is obviously the last point on the hand which moves in a circular motion. Hence, it will cover the perimeter. So, we basically need to find that part of circumference, which can cover in 40 minutes.
We know that $Circumference = 2\pi r$, where r is the radius of the circle. So, when we cover $2\pi = {360^ \circ }$, we get $Circumference = 2\pi r$.
Hence, r is multiplied to the angle covered.
Hence, now we have: \[l = r.\theta \], where $l$ is the arc length, r is the radius that is the length of the minute hand and $\theta $ is the angle covered.
Now, we know about the formula a bit more.
We also know that 1 hr = 60 minutes.
Hence, a minute hand will cover the whole \[{360^ \circ }\] in 60 minutes.
So, 60 minutes are equivalent to \[{360^ \circ }\].
$ \Rightarrow $ 1 minute is equivalent to $\dfrac{{{{360}^ \circ }}}{{60}} = {6^ \circ }$.
$ \Rightarrow $ 40 minutes are equivalent to $40 \times {6^ \circ } = {240^ \circ }$.
Now, we need the angle in radians.
${180^ \circ } = \pi $
$ \Rightarrow {1^ \circ } = \dfrac{\pi }{{180}}$
$ \Rightarrow {240^ \circ } = \dfrac{\pi }{{180}} \times 240 = \dfrac{{4\pi }}{3}$ ……….(1)
Now, coming to the formula \[l = r.\theta \].
$ \Rightarrow l = (1.5) \times \dfrac{{4\pi }}{3}$ (Using (1))
$ \Rightarrow l = (1.5) \times \dfrac{{4 \times 3.14}}{3} = 6.28cm$ (Since, $\pi = 3.14$)
Hence, $l = 6.28cm$ is the distance covered by its tip in 40 minutes.
Note: The students must always remember to change the angles from degree to change the angle in $\pi $. They make mistakes by forgetting to do so.
The students might forget to put the unit of arc length at the end, but they must remember that length is measured in units only. If I write 5 that would not signify anything. It would just be a number, not length or volume or area.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE
The length and width of a rectangle are in ratio of class 7 maths CBSE
The ratio of the income to the expenditure of a family class 7 maths CBSE
How do you write 025 million in scientific notatio class 7 maths CBSE
How do you convert 295 meters per second to kilometers class 7 maths CBSE
Write the following in Roman numerals 25819 class 7 maths CBSE
Trending doubts
When people say No pun intended what does that mea class 8 english CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How many ounces are in 500 mL class 8 maths CBSE
Which king started the organization of the Kumbh fair class 8 social science CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
Advantages and disadvantages of science