Answer
Verified
429k+ views
Hint:To find the value of the term we use the complex number multiplication expressed in form of the complex number as \[a+ib\] where the variable a and b are real numbers with the value of \[i\] as imaginary unit, when multiplying the value of \[i\times i\] we get the result of product as \[-1\] which can be used in the above question.
Complete step by step solution:
Now as given in the question, the term \[\dfrac{{{\left( 1-i \right)}^{3}}}{1-{{i}^{3}}}\] first need to simplify it in terms of \[i\] and constant numbers. Expanding the numerator and denominator in terms of simpler complex numbers, we get the numerator as:
\[\Rightarrow {{\left( 1-i \right)}^{3}}=1-i-3i+3{{i}^{2}}\]
And the denominator is written as:
\[\Rightarrow 1-{{i}^{3}}=1+i\]
Now placing the expanding part of the numerator and the denominator we get the term as:
\[\Rightarrow \dfrac{1-\left( -i \right)-3i+3{{i}^{2}}}{1+i}\]
\[\Rightarrow \dfrac{-2-2i}{1+i}\]
\[\Rightarrow \dfrac{-2\left( 1+i \right)}{1+i}\]
\[\Rightarrow -2\]
Therefore, the value of the term \[\dfrac{{{\left( 1-i \right)}^{3}}}{1-{{i}^{3}}}\] is \[-2\].
Note: Another method to solve the question is by:
\[\Rightarrow \dfrac{{{\left( 1-i \right)}^{3}}}{1-{{i}^{3}}}=\dfrac{\left( 1-i \right)\left( 1-i \right)\left( 1-i \right)}{1-1\times -i}\]
\[\Rightarrow \dfrac{{{\left( 1-i \right)}^{3}}}{1-{{i}^{3}}}=\dfrac{\left( 1-i \right)\left( 1-i \right)\left( 1-i \right)}{1+i}\]
\[\Rightarrow \dfrac{{{\left( 1-i \right)}^{3}}}{1-{{i}^{3}}}=\dfrac{-2\left( 1+i \right)}{1+i}\]
\[\Rightarrow \dfrac{{{\left( 1-i \right)}^{3}}}{1-{{i}^{3}}}=-2\]
Complete step by step solution:
Now as given in the question, the term \[\dfrac{{{\left( 1-i \right)}^{3}}}{1-{{i}^{3}}}\] first need to simplify it in terms of \[i\] and constant numbers. Expanding the numerator and denominator in terms of simpler complex numbers, we get the numerator as:
\[\Rightarrow {{\left( 1-i \right)}^{3}}=1-i-3i+3{{i}^{2}}\]
And the denominator is written as:
\[\Rightarrow 1-{{i}^{3}}=1+i\]
Now placing the expanding part of the numerator and the denominator we get the term as:
\[\Rightarrow \dfrac{1-\left( -i \right)-3i+3{{i}^{2}}}{1+i}\]
\[\Rightarrow \dfrac{-2-2i}{1+i}\]
\[\Rightarrow \dfrac{-2\left( 1+i \right)}{1+i}\]
\[\Rightarrow -2\]
Therefore, the value of the term \[\dfrac{{{\left( 1-i \right)}^{3}}}{1-{{i}^{3}}}\] is \[-2\].
Note: Another method to solve the question is by:
\[\Rightarrow \dfrac{{{\left( 1-i \right)}^{3}}}{1-{{i}^{3}}}=\dfrac{\left( 1-i \right)\left( 1-i \right)\left( 1-i \right)}{1-1\times -i}\]
\[\Rightarrow \dfrac{{{\left( 1-i \right)}^{3}}}{1-{{i}^{3}}}=\dfrac{\left( 1-i \right)\left( 1-i \right)\left( 1-i \right)}{1+i}\]
\[\Rightarrow \dfrac{{{\left( 1-i \right)}^{3}}}{1-{{i}^{3}}}=\dfrac{-2\left( 1+i \right)}{1+i}\]
\[\Rightarrow \dfrac{{{\left( 1-i \right)}^{3}}}{1-{{i}^{3}}}=-2\]
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE